Kosinus - příklady
Počet nalezených příkladů: 223
- Libovolném 74154
Ruské kolo o průměru 100 stop provede 5 otáček každých 8 minut. Základna kola je 4 stopy nad zemí. Váš přítel začíná přesně v 15:00. a) napište rovnici k vyjádření výšky vašeho přítele ve stopách v libovolném čase v sekundách. b) jaká je výška tvého příte
- Trojúhelníkový 73274
Binibini vlastní trojúhelníkový obytný pozemek ohraničený dvěma cestami, které se protínají v úhlu 70°. Strany pozemku podél cesty jsou 62 ma 43 metrů. Najděte délku plotu potřebnou k ohrazení pozemku. (vyjádřete odpovědi s přesností na setiny)
- Nepodráždilo 72384
Alžbětinský obojek se používá k tomu, aby si zvíře nepodráždilo ránu. Úhel mezi otvorem (průměr 6 palců) a koncem (o průměru 16 palců) svírá se stranou límce úhel 53 stupňů. Najděte uvedenou plochu límce.
- Pozorovatelně 71934
Letadlo letící směrem k pozorovatelně, z ní bylo zaměřeno v přímé vzdálenosti 5300 m pod výškovým úhlem 28º a po 9 sekundách v přímé vzdálenosti 2400 m pod výškovým úhlem 50º. Vypočítejte vzdálenost, kterou v tomto časovém intervalu letadlo prolétlo, jeho
- Vzdálenost 71874
Hlídka měla určený pochodový úhel 13°. Po ujetí 9 km se úhel změnil na 62°. Tímto směrem šla hlídka 10 km. zjistí vzdálenost od místa, ze kterého hlídka vyšla.
- F(x)=(e^x)/((e^x)+1) 70464
Funkce: f(x)=xtanx f(x)=(e^x)/((e^x)+1) Najít; i) vertikální a horizontální asymptoty iii) intervaly poklesu a růstu iii) Místní maxima a místní minima iv) interval konkávnosti a inflexe. A načrtněte graf.
- Seříznutého 70434
Vyjádřete povrch a objem seříznutého kužele pomocí jeho strany s, pokud pro poloměry postav r1 a r2 platí: r1 > r2, r2 = s a pokud odchylka strany od roviny podstavy je 60°.
- Nepřístupných 69794
Určete vzdálenost dvou nepřístupných míst P, Q, pokud vzdálenost dvou pozorovacích míst A, B je 2000m a znáte-li velikost úhlů QAB = 52°40'; PBA = 42°01'; PAB = 86°40' a QBA = 81°15'. Uvažovaná místa A, B, P, Q leží v jedné rovině.
- Vypočítejte 69174
Střecha věže má tvar pláště rotačního kužele o průměru podstavy 4,3m. Odchylka strany od roviny podstavy je 36°. Vypočítejte spotřebu plechu na pokrytí střechy, počítáme-li 8 % na odpad.
- Střídavého 69064
Popište, jak se mění okamžitá hodnota výkonu v obvodu střídavého proudu během jedné periody.
- Síla R
Síla R = 12 N se má rozdělit na dvě složky F1, F2, jejich směry svírají se směrem síly R úhly α = 30°, β = 45°. Jaké jsou složky F1, F2?
- Budova 3
Budova vysoká 15 m je vzdálená od břehu řeky 30 m. Ze střechy této budovy je vidět šířku řeky pod úhlem 15°. Jak je řeka široká?
- Rovnoběžníku 65954
V rovnoběžníku ABCD platí AB = 8, BC = 5, BD = 7 . Vypočtěte velikost úhlu α = ∠DAB (ve stupních).
- Rovnoběžníku 65334
V rovnoběžníku je součet délek stran a+b = 234. Úhel sevřený stranami a a b je 60°. Délka úhlopříčky proti danému úhlu 60° je u=162. Vypočítejte strany rovnoběžníku, jeho obvod a obsah.
- Vypočítejte 64864
Vypočítejte délku stínu, který vrhá metrová tyč v pravé poledne, nacházející se na rovině poledníku a odchýlená od vodorovné roviny k severu o úhel velikosti 70°, pokud Slunce kulminuje pod úhlem 41°03'.
- Trojúhelníku 64704
V trojúhelníku ABC určí velikost stran a a b a velikosti vnitřních úhlů β a γ, je-li dáno c = 1,86 m, těžnice na stranu c je 2,12 ma úhel alfa je 40° 12'.
- Trojúhelníku 64514
V trojúhelníku ABC platí a: b = 3:2 a α: β = 2:1. Vypočítejte poměr a: c.
- Pozorovateli 64354
V jakém zorném úhlu se jeví předmět 70m dlouhý pozorovateli, který je od jednoho jeho konce vzdálen 50m a od druhého konce 80m?
- V pravidelnem 4
V pravidelnem desetiuhelniku měří pruměr kružnice opsane 10cm. Urči poloměr kružnice vepsane tomuto trojuhelniku.
- Hloubkovým 63194
Určete výšku mraku nad hladinou jezera, vidíme-li ho z místa A pod výškovým úhlem 20° 57' az téhož místa A vidíme jeho obraz v jezeře pod hloubkovým úhlem 24° 12'. Pozorovací místo A je 115m nad hladinou jezera.
Máš úkol, nad kterým si lámeš alespoň 10 minut hlavu? Pošli nám úkol a my Ti ji zkusíme vypočítat.