Rovnoramenný lichoběžník
Je dán rovnoramenný lichoběžník ABCD, v němž platí:
|AB| = 2|BC| = 2|CD| = 2|DA|:
Na jeho straně BC je bod K takový, že |BK| = 2|KC|, na jeho straně CD je bod L takový, že |CL| = 2|LD|, a na jeho straně DA je bod M takový, že |DM| = 2|MA|. Určete velikosti vnitřních úhlu trojúhelníku KLM.
|AB| = 2|BC| = 2|CD| = 2|DA|:
Na jeho straně BC je bod K takový, že |BK| = 2|KC|, na jeho straně CD je bod L takový, že |CL| = 2|LD|, a na jeho straně DA je bod M takový, že |DM| = 2|MA|. Určete velikosti vnitřních úhlu trojúhelníku KLM.
Správná odpověď:
Zobrazuji 1 komentář:
Mo-radce
Nápověda. Zaměřte se nejprve na vnitřní úhly lichoběžníku ABCD.
Řešení. Z předpokladů plyne, že spojnice středu úsečky AB s vrcholy C a D rozděluje lichoběžník ABCD na tři shodné rovnostranné trojúhelníky. Proto velikosti vnitřních úhlů v lichoběžníku u vrcholů A a B jsou rovny 60°
a u vrcholů C a D jsou 120°. Ze zadání dále plyne, že trojúhelníky LCK a MDL jsou shodné (podle věty sus). Proto také úsečky KL a LM a vyznačené dvojice úhlů jsou shodné; velikosti těchto úhlů označíme α a β. Trojúhelník KLM je rovnoramenný a úhly u základny jsou taktéž shodné; jejich velikost označíme δ a velikost úhlu KLM označíme γ.
Ze součtu vnitřních úhlů v trojúhelníku KCL odvodíme
α + β = 180° − 120° = 60°
Součet tří vyznačených úhlů s vrcholem L je přímý úhel, tudíž
γ = 180° − (α + β) = 120°
Konečně, ze součtu vnitřních úhlů v trojúhelníku KLM odvodíme
δ = (180° − 120°)/2 = 30°
Velikosti vnitřních úhlů trojúhelníku KLM jsou 30° a 120°
Řešení. Z předpokladů plyne, že spojnice středu úsečky AB s vrcholy C a D rozděluje lichoběžník ABCD na tři shodné rovnostranné trojúhelníky. Proto velikosti vnitřních úhlů v lichoběžníku u vrcholů A a B jsou rovny 60°
a u vrcholů C a D jsou 120°. Ze zadání dále plyne, že trojúhelníky LCK a MDL jsou shodné (podle věty sus). Proto také úsečky KL a LM a vyznačené dvojice úhlů jsou shodné; velikosti těchto úhlů označíme α a β. Trojúhelník KLM je rovnoramenný a úhly u základny jsou taktéž shodné; jejich velikost označíme δ a velikost úhlu KLM označíme γ.
Ze součtu vnitřních úhlů v trojúhelníku KCL odvodíme
α + β = 180° − 120° = 60°
Součet tří vyznačených úhlů s vrcholem L je přímý úhel, tudíž
γ = 180° − (α + β) = 120°
Konečně, ze součtu vnitřních úhlů v trojúhelníku KLM odvodíme
δ = (180° − 120°)/2 = 30°
Velikosti vnitřních úhlů trojúhelníku KLM jsou 30° a 120°
8 let 4 Likes
Tipy na související online kalkulačky
Vypočet rovnoramenného trojúhelníku.
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.
Vyzkoušejte také naši trigonometrickou trojúhelníkovou kalkulačku.
K vyřešení této úlohy jsou potřebné tyto znalosti z matematiky:
Jednotky fyzikálních veličin:
Téma:
Úroveň náročnosti úkolu:
Doporučujeme k tomuto príkladu si prohlédnout toto výukové video: video1
Související a podobné příklady:
- Rovnoramenný 2588
Daný je rovnoramenný lichoběžník ABCD, ve kterém platí |AB|= 2|BC|= 2|CD|= 2|DA|. Na jeho straně BC je bod K takový, že |BK| = 2|KC|, na jeho straně CD je bod L takový, že |CL|= 2|LD|, a na jeho straně DA je bod M takový, že|DM|= 2|MA|. Určete velikosti v - Trojúhelníku 4908
Lichoběžník ABCD se základnami AB=a, CD=c má výšku v. Bod S je střed ramene BC. Dokažte, že obsah trojúhelníku ASD se rovná polovině obsahu lichoběžníku ABCD. - Lichoběžník 21
Je dán lichoběžníku ABCD s rovnoběžnými stranami AB a CD pro bod E strany AB plati, že úsečka DE dělí lichoběžník na dvě části se stejným obsahem. Spočítej délku úsečky AE. - Trojúhelník
V trojúhelníku ABC se stranou BC délky 2 cm je bod K středem strany AB. Body L a M rozdělují stranu AC na tři shodné úsečky. Trojúhelník KLM je rovnoramenný s pravým úhlem u vrcholu K. Určete délky stran AB, AC trojúhelníku ABC.
- V rovnoramenný lichoběžník
V rovnoramenném lichoběžníku ABCD jsou dány jeho základny AB=20cm, CD=12cm a ramena AD=BC=8cm. Určete jeho výšku a úhel alfa při vrcholu A. - Vzdálenosti 64804
Dán je čtverec ABCD. Na jeho úhlopříčce AC leží bod E tak, že platí vzdálenost AB je rovna vzdálenosti AE. Jaká je velikost úhlu EBC? - V lichoběžníku 5
V lichoběžníku ABCD (AB II CD) je α = 57°, γ = 4β. Vypočítejte velikost všech vnitřních úhlů.