The mast

A 40 m high mast is secured in half by eight ropes of 25 m long. The ends of the ropes are equidistant from each other. Calculate this distance.

Correct answer:

x =  11.4805 m

Step-by-step explanation:

l=40 m l2=l/2=40/2=20 m r=252l22=252202=15 m n=8 A=360/n/2=360/8/2=452=22.5 sinA=(x/2)/r x=2 r sin(A rad)=2 r sin(A π180 )=2 15 sin(22.5 3.1415926180 )=11.481=11.4805 m



We will be pleased if You send us any improvements to this math problem. Thank you!



avatar




Tips to related online calculators
Do you want to convert length units?
Pythagorean theorem is the base for the right triangle calculator.
See also our trigonometric triangle calculator.

 
We encourage you to watch this tutorial video on this math problem: video1   video2

Related math problems and questions:

  • Mast
    stoziar Mast has 13 m long shadow on a slope rising from the mast foot in the direction of the shadow angle at angle 13.3°. Determine the height of the mast, if the sun above the horizon is at angle 45°12'.
  • Sailboat
    Plachetnice The 20 m long sailboat has an 8 m high mast in the middle of the deck. The top of the mast is fixed to the bow and stern with a steel cable. Determine how much cable is needed to secure the mast and what angle the cable will make with the ship's deck.
  • Resultant force
    3forces Calculate mathematically and graphically the resultant of three forces with a common center if: F1 = 50 kN α1 = 30° F2 = 40 kN α2 = 45° F3 = 40 kN α3 = 25°
  • Right angle
    rt_triangle_1 In a right triangle ABC with a right angle at the apex C, we know the side length AB = 24 cm and the angle at the vertex B = 71°. Calculate the length of the legs of the triangle.
  • Right triangle trigonometrics
    triangle2 Calculate the size of the remaining sides and angles of a right triangle ABC if it is given: b = 10 cm; c = 20 cm; angle alpha = 60° and the angle beta = 30° (use the Pythagorean theorem and functions sine, cosine, tangent, cotangent)
  • Mast shadow
    horizons Mast has 13 m long shadow on a slope rising from the mast foot in the direction of the shadow angle at angle 15°. Determine the height of the mast, if the sun above the horizon is at angle 33°. Use the law of sines.
  • Right angled triangle 3
    right_triangle_3 Side b = 1.5, hypotenuse angle A = 70 degrees, Angle B = 20 degrees. Find its unknown sides length.
  • Diagonal
    krychle Determine the dimensions of the cuboid, if diagonal long 53 dm has an angle with one edge 42° and with another edge 64°.
  • Moon
    zem_mesic We see Moon in the perspective angle 28'. Moon's radius is 1740 km at the time of the full moon. Calculate the mean distance of the Moon from the Earth.
  • Decagon
    decanon Calculate the area and circumference of the regular decagon when its radius of a circle circumscribing is R = 1m
  • Pentadecagon
    220px-Regular_polygon_15_annotated.svg Calculate the content of a regular 15-sides polygon inscribed in a circle with radius r = 4. Express the result to two decimal places.
  • IS triangle
    isoscelestriangle-pic Calculate interior angles of the isosceles triangle with base 40 cm and legs 22 cm long.
  • Rectangle
    golden-rectangle-ratio Calculate the length of the side GN and diagonal QN of rectangle QGNH when given: |HN| = 25 cm and angle ∠ QGH = 28 degrees.
  • Elevation angles
    mountain From the endpoints of the base 240 m long and inclined at an angle of 18° 15 ', the top of the mountain can be seen at elevation angles of 43° and 51°. How high is the mountain?
  • Pentagon
    5gon Calculate the length of side, circumference and area of a regular pentagon, which is inscribed in a circle with radius r = 6 cm.
  • Regular n-gon
    regular_polygons Which regular polygon have a radius of circumscribed circle r = 10 cm and the radius of inscribed circle p = 9.962 cm?
  • Inner angles
    triangle_1111 The inner angles of the triangle are 30°, 45° and 105° and its longest side is 10 cm. Calculate the length of the shortest side, write the result in cm up to two decimal places.