Self-counting machine

The self-counting machine works exactly like a calculator. The innkeeper wanted to add several three-digit natural numbers on his own. On the first attempt, he got the result in 2224. To check, he added these numbers again and he got 2198. Therefore, he added these numbers again and now he got the sum of 2204. He always entered the fifth added number incorrectly, because he did not press any of its digits hard enough in each attempt, and in the self-calculation, he always entered a two-digit number instead of a three-digit number. He did not make any other errors in the census, and this time the self-count also worked flawlessly. What is the correct sum of inn numbers?

Correct result:

s =  2324

Solution:

2224=s(a 100+b 10+c)+b 10+c 2198=s(a 100+b 10+c)+a 10+b 2204=s(a 100+b 10+c)+a 10+c  0<a<10 0<=b<10;0<=c<10  s=2324  x=139  a=1 b=3 c=9  c1=2324139+39=2224 c2=2324139+13=2198 c3=2324139+19=2204



We would be pleased if you find an error in the word problem, spelling mistakes, or inaccuracies and send it to us. Thank you!






Showing 0 comments:
avatar




Tips to related online calculators
Do you have a system of equations and looking for calculator system of linear equations?
Do you solve Diofant problems and looking for a calculator of Diofant integer equations?

Next similar math problems:

  • Z9-I-4
    numbers_30 Kate thought a five-digit integer. She wrote the sum of this number and its half at the first line to the workbook. On the second line wrote a total of this number and its one fifth. On the third row she wrote a sum of this number and its one nines. Final
  • Octahedron - sum
    8sten On each wall of a regular octahedron is written one of the numbers 1, 2, 3, 4, 5, 6, 7 and 8, wherein on different sides are different numbers. For each wall John make the sum of the numbers written of three adjacent walls. Thus got eight sums, which also
  • Z9–I–4 MO 2017
    vlak2 Numbers 1, 2, 3, 4, 5, 6, 7, 8 and 9 were prepared for a train journey with three wagons. They wanted to sit out so that three numbers were seated in each carriage and the largest of each of the three was equal to the sum of the remaining two. The conduct
  • David number
    numbers2_4 Jana and David train the addition of the decimal numbers so that each of them will write a single number and these two numbers then add up. The last example was 11.11. David's number had the same number of digits before the decimal point, the Jane's numbe
  • Last digit
    olympics_3 What is the last number of 2016 power of 2017
  • Alarm clock
    clock-night-schr The old watchmaker has a unique digital alarm in its collection that rings whenever the sum of digits of the alarm is equal to 21. Find out when the alarm clock will ring. What is their number? List all options . ..
  • Age
    age_5 In 1960 my age was equal to the digits sum of the year of my birth. What is my age now?
  • Digits A, B, C
    numbers_8 For the various digits A, B, C is true: the square root of the BC is equal to the A and sum B+C is equal to A. Calculate A + 2B + 3C. (BC is a two-digit number, not a product).
  • Phone numbers
    old_phone How many 7-digit telephone numbers can be compiled from the digits 0,1,2,..,8,9 that no digit is repeated?
  • Sawmill factory
    rj Peter works in the factory. The bus stop is 10 km from the factory. Therefore, always when the bus arrives for Peter, the driver leaves factory and takes him to work. They are coming at the saw exactly at 8:00. Today the bus arrived 11 minutes earlier and
  • Odd/even number
    numbers2_49 Pick any number. If that number is even, divide it by 2. If it's odd, multiply it by 3 and add 1. Now repeat the process with your new number. If you keep going, you'll eventually end up at 1. Every time. Prove. ..
  • Four-digit numbers
    numberline Find four-digit numbers where all the digits are different. For numbers, the sum of the third and fourth digits is twice the sum of the first two digits, and the sum of the first and fourth digits is equal to the sum of the second and third digits. The di
  • Game 27
    dice_4 Susan wanted to play the game. In the beginning, the first says a number from 1 to 8. Then the second player adds a number from 1 to 5 and tells the sum. Again, the Susan adds a number from 1-5 and say sum and etc. . . The winner must say the number 27. W
  • Daughters
    family_3 The man conducting the census asks a woman to age of three daughters. Woman says when multiply the age getnumber 72; if their ages add up, get a number of our house, as you see. The man says: That is not enough to calculate their ages. She says: my oldest
  • Unknown number
    iks-icon Samuel wrote unknown number. Then he had add 200000 to the number and the result multiply by three. When it calculated he was surprised, because the result would have received anyway, if write digit to the end of original number. Find unknown number.
  • MO Z8-I-1 2018
    age_6 Fero and David meet daily in the elevator. One morning they found that if they multiply their current age, they get 238. If they did the same after four years, this product would be 378. Determine the sum of the current ages of Fero and David.
  • Star equation
    numbers_37 Write digits instead of stars so that the sum of the written digits is odd and is true equality: 42 · ∗8 = 2 ∗∗∗