Pythagorean theorem - math word problems - page 50 of 73
Number of problems found: 1451
- Horizontally 8187
We turn the prism-shaped box with a height of 1 m and a square base with an edge of 0.6 m under a force of 350 N, which acts horizontally compared to the upper edge. What is the weight of the box? - Rotating 28501
Which bags shaped like the shell of a rotating cone can hold the most popcorn? The first bag has a height of 20 cm, and the length of its side is 24 cm. The second bag has a base radius of 10 cm and a height of 25 cm. - Six-sided parasol
The parasol has the shape of the shell of a regular six-sided pyramid, whose base edge is a=6dm and height v=25cm. How much fabric is needed to make a parasol if we count 10% for joints and waste? - Pharaoh
Kleomurapi is a pharaoh. Yesterday, his pyramid builders complained to him that their backs hurt from lifting stones. So the pharaoh had a ramp built that was 6 meters long, 2 meters wide, and 1.5 meters high to make it easier for the builders to reach th - Big Earth
What percentage of the Earth's surface is seen by an astronaut from a height of h = 350 km? Take the Earth as a sphere with a radius R = 6370 km. - Pyramidal 44061
A pyramidal candle with a square base has a side edge of s = 12 cm and a base edge of 4 cm. How much wax will we need to make it, and how long is the wick if it is 5% bigger than its height? - Equilateral cone
A cup has the shape of an equilateral cone (side “s” is the same size as the diameter of its base - the axial section is an equilateral triangle) It is supposed to hold 0.2 liters of liquid at a level 1 cm below the rim. Calculate its diameter - Four-sided turret
The turret has the shape of a regular four-sided pyramid with a base edge 0.8 m long. The height of the turret is 1.2 m. How many square meters are needed to cover it, counting the extra 10% sheet metal waste? - Axial section of the cone
The axial section of the cone is an isosceles triangle in which the ratio of cone diameter to cone side is 2:3. Calculate its volume if you know its area is 314 cm square. - Faces diagonals
Find the cuboid volume if the cuboid's diagonals are x, y, and z (wall diagonals or three faces). Solve for x=1.6, y=1.8, z=1.6 - Pyramid-shaped roof
A block-shaped shed is covered with a quadrilateral pyramid-shaped roof with a base with sides of 6m and 3m and a height of 2.5m. How many m² (square meters) must be purchased if an extra 40% is calculated for roofing and waste? - Pyramid-shaped 7820
The pyramid-shaped tent has a square base with a side size of 2.2m and a height of 1.8m. How many square meters of tent canvas are needed to make it if we count an extra five percent for the foundation? - Calculate 5789
Calculate the volume and surface of the rotating cone with the base radius r = 4.6dm and the height v = 230mm. - Dimensions 44081
In the form of a pyramid on the house with a square floor plan, the roof has dimensions of 12 x 12 m, with a height of 2 m at the highest point. How much roofing do I need to buy? Count on a 10% reserve. - Observation tower
The observation tower is covered with a roof in the shape of a regular quadrangular pyramid with a base edge of 8 m and a height of 6 m. 60% of the roofing needs to be replaced. How many m² do you need to buy? - Quadrilateral pyramid
The height of a regular quadrilateral pyramid is 6.5 cm, and the angle between the base and the side wall is 42°. Calculate the surface area and volume of the body—round calculations to 1 decimal place. - Secret treasure
Scouts have a tent in the shape of a regular quadrilateral pyramid with a side of the base of 4 m and a height of 3 m. Find the container's radius r (and height h) so that they can hide the largest possible treasure. - Confectionery
The confectioner needs to carve a cone-shaped decoration from a ball-shaped confectionery mass with a radius of 25 cm. Find the radius of the base of the ornament a (and the height h). He uses as much material as possible is used to make the ornament. - Quadrilateral 29201
How much sheet is needed for a roof with the shape of a regular quadrilateral pyramid if its edge is 2.8 m long and the height of the roof is 0.8 m? Calculate 10% for the overlap (extra). - Cylinder-shaped part
A truncated cone-shaped part with base radii of 4 cm and 22 cm is to be recast into a cylinder-shaped part of the same height as the original part. What base radius will the new part have?
Do you have homework that you need help solving? Ask a question, and we will try to solve it. Solving math problems.
