# Hexagon rotation

A regular hexagon of side 6 cm is rotated through 60° along a line passing through its longest diagonal. What is the volume of the figure thus generated?

**Result****Leave us a comment of this math problem and its solution (i.e. if it is still somewhat unclear...):**

**Showing 2 comments:**

Tips to related online calculators

Pythagorean theorem is the base for the right triangle calculator.

See also our trigonometric triangle calculator.

See also our trigonometric triangle calculator.

#### Following knowledge from mathematics are needed to solve this word math problem:

## Next similar math problems:

- Wall height

Calculate the height of a regular hexagonal pyramid with a base edge of 5 cm and a wall height w = 20 cm. - Regular hexagonal pyramid

Calculate the height of a regular hexagonal pyramid with a base edge of 5 cm and a wall height of w = 20cm. Sketch a picture. - Cut and cone

Calculate the volume of the rotation cone which lateral surface is circle arc with radius 15 cm and central angle 63 degrees. - Five-gon

Calculate the side a, the circumference and the area of the regular 5-angle if Rop = 6cm. - Tetrahedron

Calculate height and volume of a regular tetrahedron whose edge has a length 18 cm. - Candy - MO

Gretel deploys to the vertex of a regular octagon different numbers from one to eight candy. Peter can then choose which three piles of candy give Gretel others retain. The only requirement is that the three piles lie at the vertices of an isosceles triang - 4s pyramid

Regular tetrahedral pyramid has a base edge a=17 and collaterally edge length b=32. What is its height? - Truncated cone 5

The height of a cone 7 cm and the length of side is 10 cm and the lower radius is 3cm. What could the possible answer for the upper radius of truncated cone? - Euclid 5

Calculate the length of remain sides of a right triangle ABC if a = 7 cm and height v_{c}= 5 cm. - Right triangles

How many right triangles we can construct from line segments 3,4,5,6,8,10,12,13,15,17 cm long? (Do not forget to the triangle inequality). - Circle

On the circle k with diameter |MN| = 61 J lies point J. Line |MJ|=22. Calculate the length of a segment JN. - Theorem prove

We want to prove the sentence: If the natural number n is divisible by six, then n is divisible by three. From what assumption we started? - The fence

I'm building a fence. Late is rounded up in semicircle. The tops of late in the field between the columns are to copy an imaginary circle. The tip of the first and last lath in the field is a circle whose radius is unknown. The length of the circle chord - Annulus

Two concentric circles with radii 1 and 9 surround the annular circle. This ring is inscribed with n circles that do not overlap. Determine the highest possible value of n. - Is right triangle

Decide if the triangle XYZ is rectangular: x = 4 m, y = 6 m, z = 4 m - Right 24

Right isosceles triangle has an altitude x drawn from the right angle to the hypotenuse dividing it into 2 unequal segments. The length of one segment is 5 cm. What is the area of the triangle? Thank you. - Triangle IRT

In isosceles right triangle ABC with right angle at vertex C is coordinates: A (-1, 2); C (-5, -2) Calculate the length of segment AB.