Směrnice a rovnice přímky x+3y=9


Zadejte souřadnice dvou různých bodů:

Přímka vedená body A[0; 3] a B[3; 2]

Výpočet:

Smernicový tvar rovnice přímky: y = -0.3333x+3

Normálový tvar rovnice přímky: x+3y-9 = 0

Parametrický tvar rovnice přímky:
x = 3t
y = -t+3      ; t ∈ R

Směrnice: k = -0.3333

Směrový úhel přímky: φ = -18°26'6″ = -0.3218 rad

X-posunutí: x0 = 9

Y-posunutí: y0 = q = 3

Vzdálenost počátku od přímky: d0 = 2.846

Délka úsečky AB: |AB| = 3.1623

Vektor: AB = (3; -1)

Normálový vektor: n = (1; 3)

střed úsečky AB: M = [1.5; 2.5]

Rovnica osi úsečky: 3x-y-2 = 0


Vektor OA = (0; 3) ;   |OA| = 3
Vektor OB = (3; 2) ;   |OB| = 3.6056
Skalární součin OA .OB = 6
Úhel ∠ AOB = 56°18'36″ = 0.9828 rad