Téma - slovní úlohy a příklady

Počet nalezených příkladů: 1497

  • FO: 20000 mil pod mořem
    typhoon1 Ve slavném románu Julese Verna „Dvacet tisíc mil pod mořem“ zažijí tři hrdinové – profesor Aronnax se svým sluhou Conseilem a harpunářem Nedem Landem – cestu ponorkou Nautilus pod vedením kapitána Nema. Předpokládejme, že průměrná hustota mořské vody po c
  • Z9 – I – 2 MO 2018
    equliateral V rovnostranném trojúhelníku ABC je K středem strany AB, bod L leží v třetině strany BC blíže bodu C a bod M leží v třetině strany AC blíže bodu A. Určete, jakou část obsahu trojúhelníku ABC zabírá trojúhelník KLM.
  • Z9 – I – 1 MO 2019
    oriesky Ondra, Matěj a Kuba se vracejí ze sbírání ořechů, celkem jich mají 120. Matěj si stěžuje, že Ondra má jako vždy nejvíc. Otec přikáže Ondrovi, aby přisypal ze svého Matějovi tak, aby mu počet ořechů zdvojnásobil. Nyní si stěžuje Kuba, že nejvíc má Matěj. N
  • C – I – 3 MO 2018
    olympics_10 Nechť a, b, c jsou kladná reálná čísla, jejichž součet je 3, a každé z nich je nejvýše 2. Dokažte, že platí nerovnost: a2 + b2 + c2 + 3abc < 9
  • Pan Cuketa
    cuketa Pan Cuketa měl obdelníkovou zahradu. jejíž obvod byl 28 metrů. Obsah celé zahrady vyplnily právě čtyři čtvercové záhony, jejichž rozměry v metrech byly vyjádřeny celými čísly. Určete, jaké rozměry mohla mít zahrada. najděte všechny možnosti a zapište n ja
  • Vláček
    train2 Čísla 1,2,3,4,5,6,7,8 a 9 cestovala vlakem. Vlak měl tři vagony a v každém se vezla právě tři čísla. Číslo 1 se vezlo v prvním vagonu a v posledním vagonu byla všechna čísla lichá. Průvodčí cestou spočítal součet čísel v prvním, druhém i posledním vagonu
  • Z9–I–4 MO 2017
    vlak2 Čísla 1, 2, 3, 4, 5, 6, 7, 8 a 9 se chystala na cestu vlakem se třemi vagóny. Chtěla se rozsadit tak, aby v každém vagóně seděla tři čísla a největší z každé trojice bylo rovno součtu zbylých dvou. Průvodčí tvrdil, že to není problém, a snažil se číslům p
  • Z7–I–2 MO 2017
    rt_triangle_2 Jsou dány dvě dvojice rovnoběžných přímek AB k CD a AC k BD. Bod E leží na přímce BD, bod F je středem úsečky BD, bod G je středem úsečky CD a obsah trojúhelníku ACE je 20 cm2. Určete obsah trojúhelníku DFG.
  • MO 2019 Z5–I–3 Dukáty
    dukat Pan král rozdával svým synům dukáty. Nejstaršímu synovi dal určitý počet dukátů, mladšímu dal o jeden dukát méně, dalšímu dal opět o jeden dukát méně a takto postupoval až k nejmladšímu. Poté se vrátil k nejstaršímu synovi, dal mu o jeden dukát méně než p
  • Mo - kružnice
    mo Jirka sestrojil čtverec ABCD o straně 12 cm. Do tohoto čtverce narýsoval čtvrtkružnici k, která měla střed v bodě B a procházela bodem A, a půlkružnici l, která měla střed v polovině strany BC a procházela bodem B. Rád by ještě sestrojil kružnici, která b
  • Z6-I-6 MO 2018
    12uholnik_1 Ve dvanáctiúhelníku ABCDEF GHIJKL jsou každé dvě sousední strany kolmé a všechny strany s výjimkou stran AL a GF jsou navzájem shodné. Strany AL a GF jsou oproti ostatním stranám dvojnásobně dlouhé. Úsečky BG a EL se protínají v bodě M a rozdělují dvanáct
  • Z6-1-4 MO 2018
    trpaslíky Pan Petřík má na zahradě 3 trpaslíky. Největší je Mašík, prostřední Jířa a nejmenší Faltýnek. Když postaví Faltýnka na Jířu jsou stejně vysocí jako Mašík. Když postaví Faltýnka na Mašíka měří o 34 cm více než Jířa. Když postaví na Mašíka Jířu, jsou o 72 c
  • Šestiúhelník nepravidelný
    6uholnik_nepravidelny Na obrázku je čtverec ABCD, čtverec EF GD a obdélník HIJD. Body J a G leží na straně CD, přičemž platí |DJ| < |DG|, a body H a E leží na straně DA, přičemž platí |DH| < |DE|. Dále víme, že |DJ| = |GC|. Šestiúhelník ABCGF E má obvod 96 cm, šestiúhelník EF
  • Ojetiny - výběr aut
    renault Peter plánuje koupit ojeté auto: první auto Renault Espace 2,0 dCi 16V Dynamique 2006, stoji 2000 eur. Je 14 roční a má kombinovanou spotřebu nafty 8 litrů. / 100 km. Nafta stojí 1,1 eur/litr. Kolik ho bude auto stát provozovat další 4 roky, pokud ročně n
  • Davidovo číslo
    numbers2_4 Jana a David trénují sčítání desetinných čísel tak, ze každý z nich napíše jedno číslo, a tato dvě čísla pak sečtou. Posledni příklad jim vyšel 11,11. Davidovo číslo mělo před desetinnou čárkou stejný počet číslic jako za ní, Janino číslo také. Davidovo č
  • Bazén 22
    bazen2_20 Bazén o délce l = 50 m a šířce s = 15 m má u stěny v nejmělčí části hloubku h1 = 1,2 m. Hloubka se pak plynule zvětšuje do hloubky h2 = 1,5 m uprostřed bazénu a dál se opět plynule zvětšuje do hloubky h3 = 4,5 m u stěny v nejhlubší části bazénu. Uvažujte
  • Z9–I–3
    ball_floating_water Julince se zakutálel míček do bazénu a plaval ve vodě. Jeho nejvyšší bod byl 2 cm nad hladinou. Průměr kružnice, kterou vyznačila hladina vody na povrchu míčku, byl 8 cm. Určete průměr Julinčina míčku.
  • Pastevci
    ovce-miestami-baran Na louce se pasou koně, krávy a ovce, spolu jich je méně než 200. Kdyby bylo krav 45-krát více, koní 60-krát více a ovcí 35krát více než jejich je nyní, jejich počty by se rovnaly. Kolik se spolu na louce pase koní, krav a ovcí?
  • C–I–4 MO 2017
    nahoda Určete největší celé číslo n, při kterém lze čtvercovou tabulku n×n zaplnit přirozenými čísly od 1 do n2 (n na druhou) tak, aby v každé její čtvercové části 3×3 byla zapsána aspoň jedna druhá mocnina celého čísla.
  • Pážata MO Z6-I-4
    coins Jednou si král zavolal všechna svá pážata a postavil je do řady. Prvnímu pážeti dal určitý počet dukátů, druhému dal o dva dukáty méně, třetímu opět o dva dukáty méně a tak dále. Když došel k poslednímu pážeti, dal mu příslušný počet dukátů, otočil se a o

Máš zajímavý příklad nebo úlohu, který nevíš vypočítat? Vlož úlohu a my Ti ju zkusíme vypočítat.



Na tuto e mailovou adresu Vám odpovíme řešení; řešené příklady přibývají i zde. Pokud ji uvedete, uveďte ji bezchybně a zkontrolujte si zda nemáte plný mailbox.

Prosím nevkládejte soutěžní úlohy z aktuálních soutěží typu Matematická olympiáda , korenšpondenčné semináře, Pytagoriády atd.