Fraction calculator



This fraction calculator performs all fraction operations - addition, subtraction, multiplication, division and evaluates expressions with fractions. It also shows detailed step-by-step information.

The result:

4 1/7 + 2 1/3 - 3/4 = 481/84 = 5 61/845.7261905

The result spelled out in words is four hundred eighty-one eighty-fourths (or five and sixty-one eighty-fourths).

How do we solve fractions step by step?

  1. Conversion a mixed number 4 1/7 to a improper fraction: 4 1/7 = 4 1/7 = 4 · 7 + 1/7 = 28 + 1/7 = 29/7

    To find a new numerator:
    a) Multiply the whole number 4 by the denominator 7. Whole number 4 equally 4 * 7/7 = 28/7
    b) Add the answer from the previous step 28 to the numerator 1. New numerator is 28 + 1 = 29
    c) Write a previous answer (new numerator 29) over the denominator 7.

    Four and one seventh is twenty-nine sevenths.
  2. Conversion a mixed number 2 1/3 to a improper fraction: 2 1/3 = 2 1/3 = 2 · 3 + 1/3 = 6 + 1/3 = 7/3

    To find a new numerator:
    a) Multiply the whole number 2 by the denominator 3. Whole number 2 equally 2 * 3/3 = 6/3
    b) Add the answer from the previous step 6 to the numerator 1. New numerator is 6 + 1 = 7
    c) Write a previous answer (new numerator 7) over the denominator 3.

    Two and one third is seven thirds.
  3. Add: 29/7 + 7/3 = 29 · 3/7 · 3 + 7 · 7/3 · 7 = 87/21 + 49/21 = 87 + 49/21 = 136/21
    It is suitable to adjust both fractions to a common (equal) denominator for adding fractions. The common denominator you can calculate as the least common multiple of both denominators - LCM(7, 3) = 21. It is enough to find the common denominator (not necessarily the lowest) by multiplying the denominators: 7 × 3 = 21. In the following intermediate step, it cannot further simplify the fraction result by canceling.
    In other words, twenty-nine sevenths plus seven thirds equals one hundred thirty-six twenty-firsts.
  4. Subtract: the result of step No. 3 - 3/4 = 136/21 - 3/4 = 136 · 4/21 · 4 - 3 · 21/4 · 21 = 544/84 - 63/84 = 544 - 63/84 = 481/84
    It is suitable to adjust both fractions to a common (equal) denominator for subtracting fractions. The common denominator you can calculate as the least common multiple of both denominators - LCM(21, 4) = 84. It is enough to find the common denominator (not necessarily the lowest) by multiplying the denominators: 21 × 4 = 84. In the following intermediate step, it cannot further simplify the fraction result by canceling.
    In other words, one hundred thirty-six twenty-firsts minus three quarters equals four hundred eighty-one eighty-fourths.

Rules for expressions with fractions:

Fractions - write a forward slash to separate the numerator and the denominator, i.e., for five-hundredths, enter 5/100. If you use mixed numbers, leave a space between the whole and fraction parts.

Mixed numerals (mixed numbers or fractions) - keep one space between the whole part and fraction and use a forward slash to input fraction i.e., 1 2/3 . A negative mixed fraction write for example as -5 1/2.
A slash is both a sign for fraction line and division, use a colon (:) for division fractions i.e., 1/2 : 1/3.
Decimals (decimal numbers) enter with a decimal dot . and they are automatically converted to fractions - i.e. 1.45.


Math Symbols


SymbolSymbol nameSymbol MeaningExample
+plus signaddition 1/2 + 1/3
-minus signsubtraction 1 1/2 - 2/3
*asteriskmultiplication 2/3 * 3/4
×times signmultiplication 2/3 × 5/6
:division signdivision 1/2 : 3
/division slashdivision 1/3 / 5
:coloncomplex fraction 1/2 : 1/3
^caretexponentiation / power 1/4^3
()parenthesescalculate expression inside first-3/5 - (-1/4)


The calculator follows well-known rules for the order of operations. The most common mnemonics for remembering this order are:
  • PEMDAS: Parentheses, Exponents, Multiplication, Division, Addition, Subtraction.
  • BEDMAS: Brackets, Exponents, Division, Multiplication, Addition, Subtraction.
  • BODMAS: Brackets, Order (or "Of"), Division, Multiplication, Addition, Subtraction.
  • GEMDAS: Grouping symbols (brackets: `(){}`), Exponents, Multiplication, Division, Addition, Subtraction.
  • MDAS: Multiplication and Division (same precedence), Addition and Subtraction (same precedence). MDAS is a subset of PEMDAS.
Important Notes:
1. Multiplication/Division vs. Addition/Subtraction: Always perform multiplication and division *before* addition and subtraction.
2. Left-to-Right Rule: Operators with the same precedence (e.g., `+` and `-`, or `*` and `/`) must be evaluated from left to right.

Last Modified: April 16, 2025