Elevation

What must be the elevation of an observer in order that he may be able to see an object on the earth 782 km away? Assume the earth to be a smooth sphere with radius 6378.1 km.

Result

h =  47760.5 m

Solution:

Solution in text h =







Leave us a comment of example and its solution (i.e. if it is still somewhat unclear...):

Showing 0 comments:
1st comment
Be the first to comment!
avatar




See also our right triangle calculator. See also our trigonometric triangle calculator.

Next similar examples:

  1. Double ladder
    rr_rebrik The double ladder shoulders should be 3 meters long. What height will the upper top of the ladder reach if the lower ends are 1.8 meters apart?
  2. Common chord
    chord2 Two circles with radius 17 cm and 20 cm are intersect at two points. Its common chord is long 27 cm. What is the distance of the centers of these circles?
  3. Sphere cuts
    sphere_cut At what distance from the center intersects sphere with radius R = 56 plane, if the cut area and area of the main sphere circle is in ratio 1/2.
  4. Theorem prove
    thales_1 We want to prove the sentense: If the natural number n is divisible by six, then n is divisible by three. From what assumption we started?
  5. Truncated cone 5
    truncated_cone The height of a cone 7 cm and the length of side is 10 cm and the lower radius is 3cm. What could the possible answer for the upper radius of truncated cone?
  6. A truck
    truck_11 A truck departs from a distribution center. From there, it goes 20km west, 30km north and 10km west and reaches a shop. How can the truck reach back to the distribution center from the shop (what is the shortest path)?
  7. Center traverse
    trianles It is true that the middle traverse bisects the triangle?
  8. Double ladder
    dvojak The double ladder is 8.5m long. It is built so that its lower ends are 3.5 meters apart. How high does the upper end of the ladder reach?
  9. Pavement
    chodnik2 Calculate the length of the pavement that runs through a circular square with a diameter of 40 m if distance the pavement from the center is 15 m.
  10. Pendulum
    kyvadlo Calculate the length of the pendulum that is 2 cm lower in the lowest position than in the highest position. The length of the circular arc to be described when moving is 20cm.
  11. Concentric circles
    chord_2 In the circle with diameter 19 cm is constructed chord 9 cm long. Calculate the radius of a concentric circle that touches this chord.
  12. Horizon
    lighthouse The top of a lighthouse is 17 m above the sea. How far away is an object which is just “on the horizon”? [Assume the earth is a sphere of radius 6378.1 km.]
  13. Circumscribing
    thales Determine the radius of the circumscribed circle to the right triangle with legs 9 cm and 6 cm.
  14. RT - inscribed circle
    rt_incircle In a rectangular triangle has sides lengths> a = 30cm, b = 12.5cm. The right angle is at the vertex C. Calculate the radius of the inscribed circle.
  15. Median
    medians.JPG In triangle ABC is given side a=10 cm and median ta= 13 cm and angle gamma 90°. Calculate length of the median tb.
  16. Triangle IRT
    triangles_5 In isosceles right triangle ABC with right angle at vertex C is coordinates: A (-1, 2); C (-5, -2) Calculate the length of segment AB.
  17. Stairway
    schody Stairway has 20 steps. Each step has a length of 22 cm and a height of 15 cm. Calculate the length of the handrail of staircases if on the top and bottom exceeds 10 cm.