# Giant coin

From coinage metal was produced giant coin and was applied so much metal, such as production of 10 million actual coins. What has this giant coin diameter and thickness, if the ratio of diameter to thickness is the same as a real coin, which has a diameter of 1.6 cm and a thickness of 1.6 mm.

**Result****Leave us a comment of example and its solution (i.e. if it is still somewhat unclear...):**

**Showing 0 comments:**

**Be the first to comment!**

#### To solve this example are needed these knowledge from mathematics:

## Next similar examples:

- Total displacement

Calculate total displacement of the 4-cylinder engine with the diameter of the piston bore B = 6.6 cm and stroke S=2.4 cm of the piston. Help: the crankshaft makes one revolution while the piston moves from the top of the cylinder to the bottom and back. - Shots

Determine the percentage rate of keeper interventions if from 32 shots doesn't caught four shots. - A pipe

A radius of a cylindrical pipe is 2 ft. If the pipe is 17 ft long, what is its volume? - Garden pond

Concrete garden pond has bottom shape of a semicircle with a diameter 1.7 m and is 79 cm deep. Daddy wants make it surface. How many liters of water is in pond if watel level is 28 cm? - Common cylinder

I've quite common example of a rotary cylinder. Known: S1 = 1 m^{2}, r = 0.1 m Calculate : v =? V =? You can verify the results? - Cylinder surface area

Volume of a cylinder whose height is equal to the radius of the base is 678.5 dm^{3}. Calculate its surface area. - Cylinder

The cylinder surface is 859 dm^{2}, its height is equal to the radius of the base. Calculate height of this cylinder. - Candy

Peter had a sachet of candy. He wanted to share with his friends. If he gave them 30 candies, he would have 62 candies. If he gave them 40 candies, he would miss 8 candies. How many friends did Peter have? - Enrollment

The enrollment at a local college increased 4% over last year's enrollment of 8548. Find the increase in enrollment (x_{1}) and the current enrollment (x_{2}). - Circle r,D

Calculate the diameter and radius of the circle if it has length 52.45 cm. - Greenhouse

Garden plastic greenhouse is shaped half cylinder with a diameter of 6 m and base length 20 m. At least how many m^{2}of plastic is need to its cover? - Circular lawn

Around a circular lawn area is 2 m wide sidewalk. The outer edge of the sidewalk is curb whose width is 2 m. Curbstone and the inner side of the sidewalk together form a concentric circles. Calculate the area of the circular lawn and the result round to 1 - Divisible by 5

How many three-digit odd numbers divisible by 5, which are in place ten's number 3? - Cancer

Of the 80 people 50 people ill cancer. What percentage of people isn't ill? - Regular octagon

Draw the regular octagon ABCDEFGH inscribed with the circle k (S; r = 2.5 cm). Select point S' so that |SS'| = 4.5 cm. Draw S (S '): ABCDEFGH - A'B'C'D'E'F'G'H'. - Two circles

Two circles with a radius 4 cm and 3 cm have a center distance 0.5cm. How many common points have these circles? - Flowerbed

In the park there is a large circular flowerbed with a diameter of 12 m. Jakub circulated him ten times and the smaller Vojtoseven times. How many meters each went by and how many meters did Jakub run more than Vojta?