# A concrete pedestal

A concrete pedestal has a shape of a right circular cone having a height of 2.5 feet. The diameter of the upper and lower bases are 3 feet and 5 feet, respectively. Determine the lateral surface area, total surface area, and the volume of the pedestal.

### Correct answer:

Tips to related online calculators

Tip: Our volume units converter will help you with the conversion of volume units.

Pythagorean theorem is the base for the right triangle calculator.

See also our trigonometric triangle calculator.

Pythagorean theorem is the base for the right triangle calculator.

See also our trigonometric triangle calculator.

#### You need to know the following knowledge to solve this word math problem:

## Related math problems and questions:

- Frustum of a cone

A reservoir contains 28.54 m³ of water when full. The diameter of the upper base is 3.5 m, while at the lower base is 2.5 m. Find the height if the reservoir is in the form of a frustum of a right circular cone. - Truncated pyramid

The concrete pedestal in the shape of a regular quadrilateral truncated pyramid has a height of 12 cm, the pedestal edges have lengths of 2.4 and 1.6 dm. Calculate the surface of the base. - Slant height 2

A regular triangular pyramid with a slant height of 9 m has a volume equal to 50 m³. Find the lateral area of the pyramid. - Truncated pyramid

The truncated regular quadrilateral pyramid has a volume of 74 cm^{3}, a height v = 6 cm, and an area of the lower base 15 cm² greater than the upper base's content. Calculate the area of the upper base. - Surface of the cone

Calculate the surface of the cone if its height is 8 cm and the volume is 301.44 cm³. - Truncated cone 3

The surface of the truncated rotating cone S = 7697 meters square, the substructure diameter is 56m and 42m, find the height of the tang. - Cone and the ratio

The rotational cone has a height 43 cm, and the ratio of the base surface to lateral surface is 5: 7. Calculate the surface of the base and the lateral surface. - Frustrum - volume, area

Calculate the surface and volume of the truncated cone, the radius of the smaller figure is 4 cm, the height of the cone is 4 cm and the side of the truncated cone is 5 cm. - Lateral surface area

The ratio of the area of the base of the rotary cone to its lateral surface area is 3: 5. Calculate the surface and volume of the cone, if its height v = 4 cm. - Wooden bowls

20 wooden bowls in the shape of a truncated cone should be painted on the outside and inside with wood varnish. We need 0.1 l of paint to paint 200 cm². How many liters of paint do we have to buy if the bowls are 25 cm high, the bottom of the bowl has a d - Sphere parts, segment

A sphere with a diameter of 20.6 cm, the cut is a circle with a diameter of 16.2 cm. .What are the volume of the segment and the surface of the segment? - Pile of sand

A large pile of sand has been dumped into a conical pile in a warehouse. The slant height of the pile is 20 feet. The diameter of the base of the sandpile is 31 feet. Find the volume of the pile of sand. - Digging a pit

The pit has the shape of a regular quadrilateral truncated pyramid. The edges of the bases are 14m and 10m long. The sidewalls form an angle of 135° with a smaller base. Determine how many m³ of soil were excavated when digging the pit? - Rotary bodies

The rotating cone and the rotary cylinder have the same volume of 180 cm³ and the same height v = 15 cm. Which of these two bodies has a larger surface area? - Volume of the cone

Calculate the volume of the cone if the content of its base is 78.5 cm² and the content of the shell is 219.8 cm². - Truncated cone

Find the volume and surface area of the truncated cone if r1 = 12 cm, r2 = 5 cm and side s = 10 cm. - Two vases

Michaela has two vases in her collection. The first vase has the shape of a cone with a base diameter d = 20 cm; the second vase has the shape of a truncated cone with the lower base d1 = 25 cm and with the diameter of the upper base d2 = 15 cm. Which vas