A trapezoid

A trapezoid with a base length of a = 36.6 cm, with angles α = 60°, β = 48°, and the height of the trapezoid is 20 cm. Calculate the lengths of the other sides of the trapezoid.

Correct answer:

b =  23.094 cm
d =  26.9127 cm
c =  5.1356 cm

Step-by-step explanation:

a=36.6 cm α=60  β=48   h=20 cm  sin α = h:b  b=h/sin(α)=20/sin(60°)=23.094 cm
sin β = h:d  d=h/sin(β)=20/sin(48°)=26.9127 cm
x1+c+x2 = a cos α = x1 : d cos β = x2 : d  c=ad (cosα+cosβ)=ad (cos60° +cos48° )=36.626.9127 (cos60° +cos48° )=36.626.9127 (0.5+0.669131)=5.136=5.1356 cm



Did you find an error or inaccuracy? Feel free to write us. Thank you!







Tips for related online calculators
Do you want to convert length units?
See also our right triangle calculator.
See also our trigonometric triangle calculator.
Try conversion angle units angle degrees, minutes, seconds, radians, grads.

You need to know the following knowledge to solve this word math problem:


 
We encourage you to watch this tutorial video on this math problem: video1   video2

Related math problems and questions: