# Space vectors 3D

The vectors u = (1; 3; -4), v = (0; 1; 1) are given. Find the size of these vectors, calculate the angle of the vectors, the distance between the vectors.

### Correct answer:

Tips to related online calculators

Our vector sum calculator can add two vectors given by their magnitudes and by included angle.

Pythagorean theorem is the base for the right triangle calculator.

Cosine rule uses trigonometric SAS triangle calculator.

See also our trigonometric triangle calculator.

Pythagorean theorem is the base for the right triangle calculator.

Cosine rule uses trigonometric SAS triangle calculator.

See also our trigonometric triangle calculator.

#### You need to know the following knowledge to solve this word math problem:

## Related math problems and questions:

- Angle of the body diagonals

Using vector dot product calculate the angle of the body diagonals of the cube. - Triangle

Plane coordinates of vertices: K[11, -10] L[10, 12] M[1, 3] give Triangle KLM. Calculate its area and its interior angles. - Angle between vectors

Find the angle between the given vectors to the nearest tenth of a degree. u = (-22, 11) and v = (16, 20) - Cuboids

Two separate cuboids with different orientation in space. Determine the angle between them, knowing the direction cosine matrix for each separate cuboid. u1=(0.62955056, 0.094432584, 0.77119944) u2=(0.14484653, 0.9208101, 0.36211633) - Vector sum

The magnitude of the vector u is 12 and the magnitude of the vector v is 8. Angle between vectors is 61°. What is the magnitude of the vector u + v? - Scalar dot product

Calculate u.v if |u| = 5, |v| = 2 and when angle between the vectors u, v is: a) 60° b) 45° c) 120° - Find the 5

Find the equation of the circle with center at (1,20), which touches the line 8x+5y-19=0 - Decide 2

Decide whether points A[-2, -5], B[4, 3] and C[16, -1] lie on the same line - Distance of points

A regular quadrilateral pyramid ABCDV is given, in which edge AB = a = 4 cm and height v = 8 cm. Let S be the center of the CV. Find the distance of points A and S. - Angles by cosine law

Calculate the size of the angles of the triangle ABC, if it is given by: a = 3 cm; b = 5 cm; c = 7 cm (use the sine and cosine theorem). - Four sides of trapezoid

In the trapezoid ABCD is |AB| = 73.6 mm; |BC| = 57 mm; |CD| = 60 mm; |AD| = 58.6 mm. Calculate the size of its interior angles. - Parametric form

Calculate the distance of point A [2,1] from the line p: X = -1 + 3 t Y = 5-4 t Line p has a parametric form of the line equation. .. - Scalar product

Calculate the scalar product of two vectors: (2.5) (-1, -4) - Three vectors

The three forces whose amplitudes are in ratio 9:10:17 act in the plane at one point to balance. Determine the angles of each two forces. - Find the 10

Find the value of t if 2tx+5y-6=0 and 5x-4y+8=0 are perpendicular, parallel, what angle does each of the lines make with the x-axis, find the angle between the lines? - Vector v4

Find the vector v4 perpendicular to vectors v1 = (1, 1, 1, -1), v2 = (1, 1, -1, 1) and v3 = (0, 0, 1, 1) - Calculate 2

Calculate the largest angle of the triangle whose side are 5.2cm, 3.6cm, and 2.1cm