GP - edge lengths

The block edge lengths are made up of three consecutive GP members. The sum of the lengths of all edges is 84 cm, and the volume block is 64 cm3. Determine the surface of the block.

Correct answer:

S =  672 cm2

Step-by-step explanation:

a+b+c=84 cm V=64 cm3  b=q a c=q2 a  V =abc = a3 q3 = (a q)3 = b3  b=3V=364=4 cm  a+c=84b ac = V/b a(84ba) = V/b  a(84ba)=V/b  a(844a)=64/4 a2+80a16=0 a280a+16=0  p=1;q=80;r=16 D=q24pr=8024116=6336 D>0  a1,2=2pq±D=280±6336=280±2411 a1,2=40±39.799497 a1=79.799497484 a2=0.200502516  a=a2=0.20050.2005 c=V/(b a)=64/(4 0.2005)79.7995 cm  S=2 (a b+b c+a c)=2 (0.2005 4+4 79.7995+0.2005 79.7995)=672=672 cm2   Verifying Solution:  V2=a b c=0.2005 4 79.7995=64 cm3 s2=a+b+c=0.2005+4+79.7995=84 cm q1=b/a=4/0.200519.9499 q2=c/b=79.7995/419.9499

Our quadratic equation calculator calculates it.




Did you find an error or inaccuracy? Feel free to write us. Thank you!







Tips for related online calculators
Looking for a statistical calculator?
Are you looking for help with calculating roots of a quadratic equation?
Do you have a linear equation or system of equations and are looking for its solution? Or do you have a quadratic equation?
Tip: Our volume units converter will help you convert volume units.

You need to know the following knowledge to solve this word math problem:

statisticsalgebrasolid geometryplanimetricsUnits of physical quantitiesGrade of the word problem

 
We encourage you to watch this tutorial video on this math problem: video1

Related math problems and questions: