Circumscribed 6568

In a right triangle ABC with a right angle at the vertex C, it is given: a = 17cm, Vc = 8 cm. Calculate the length of the sides b, c, its area S, the perimeter o, the length of the radii of the circles of the triangle circumscribed by R and inscribed r and the magnitude of the angles alpha and beta.

Correct answer:

b =  9.0667 cm
c =  19.2667 cm
S =  77.0667 cm2
o =  45.3333 cm
A =  61.9275 °
B =  28.0725 °
r =  3.4 cm
R =  9.6333 cm

Step-by-step explanation:

a=17 cm h=8 cm c1=a2h2=17282=15 cm h2 = c1   c2 c2=h2/c1=82/15=15644.2667 cm c=c1+c2=15+4.2667=1528919.2667 b=c2a2=19.26672172=9.0667 cm
c=19.2667=19.2667 cm

Try calculation via our triangle calculator.

S=2a b=217 9.0667=151156 cm2=77.0667 cm2
o=a+b+c=17+9.0667+19.2667=45.3333 cm
r=2a+bc=217+9.066719.2667=517 cm=3.4 cm
R=2c=219.2667=30289 cm=9.6333 cm

Did you find an error or inaccuracy? Feel free to write us. Thank you!

Tips for related online calculators
Looking for a statistical calculator?
See also our right triangle calculator.
See also our trigonometric triangle calculator.

We encourage you to watch this tutorial video on this math problem: video1   video2

Related math problems and questions: