Probabilities

If probabilities of A, B and A ∩ B are P (A) = 0.62 P (B) = 0.78 and P (A ∩ B) = 0.26 calculate the following probability (of union. intersect and opposite and its combinations):

Result

P(A′) =  0.38
P(B′) =  0.22
P(A ∪ B) =  1.14
P(A′∩ B) =  0.52
P(A ∩ B′) =  0.36
P[( A ∪ B)′] =  -0.14
P( A′ ∪ B) =  0.64

Solution:

P(A′) = 1-0.62 = 0.38
P(B′) = 1-0.78 = 0.22
P(A ∪ B) = 0.62+0.78-0.26 = 1.14
P(A′∩ B) = 0.78-0.26 = 0.52
P(A ∩ B′) = 0.62-0.26 = 0.36
P[( A ∪ B)′] = 1-(0.62+0.78-0.26) = -0.14
P( A′ ∪ B) = 1-0.62+ 0.26 = 0.64







Leave us a comment of this math problem and its solution (i.e. if it is still somewhat unclear...):

Showing 0 comments:
1st comment
Be the first to comment!
avatar




To solve this verbal math problem are needed these knowledge from mathematics:

Would you like to compute count of combinations?

Next similar math problems:

  1. Lottery
    lottery Fernando has two lottery tickets each from other lottery. In the first is 973 000 lottery tickets from them wins 687 000, the second has 1425 000 lottery tickets from them wins 1425 000 tickets. What is the probability that at least one Fernando's ticket w
  2. Today in school
    skola There are 9 girls and 11 boys in the class today. What is the probability that Suzan will go to the board today?
  3. Class - boys and girls
    kresba In the class are 60% boys and 40% girls. Long hair has 10% boys and 80% girls. a) What is the probability that a randomly chosen person has long hair? b) The selected person has long hair. What is the probability that it is a girl?
  4. First man
    workers_7 What is the likelihood of a random event where are five men and seven women first will leave the man?
  5. Candies
    bonbons_2 In the box are 12 candies that look the same. Three of them are filled with nougat, five by nuts, four by cream. At least how many candies must Ivan choose to satisfy itself that the selection of two with the same filling? ?
  6. Probability
    loto What are the chances that the lottery, in which the numbers are drawn 5 of 50 you win the first prize?
  7. Balls
    spheres_1 The urn is 8 white and 6 black balls. We pull 4 randomly balls. What is the probability that among them will be two white?
  8. Normal distribution GPA
    normal_d_3 The average GPA is 2.78 with a standard deviation of 4.5. What are students in the bottom the 20% having what GPA?
  9. Cards
    cards_4 The player gets 8 cards of 32. What is the probability that it gets a) all 4 aces b) at least 1 ace
  10. Median
    statistics The number of missed hours was recorded in 11 pupils: 5,12,6,8,10,7,5,110,2,5,6. Determine the median.
  11. Theorem prove
    thales_1 We want to prove the sentence: If the natural number n is divisible by six, then n is divisible by three. From what assumption we started?
  12. Chords
    chords How many 4-tones chords (chord = at the same time sounding different tones) is possible to play within 7 tones?
  13. Sequence 2
    seq2 Write the first 5 members of an arithmetic sequence a11=-14, d=-1
  14. Legs
    rak Cancer has 5 pairs of legs. The insect has 6 legs. 60 animals have a total of 500 legs. How much more are cancers than insects?
  15. AP - simple
    sigma_1 Determine the first nine elements of sequence if a10 = -1 and d = 4
  16. Elimination method
    rovnice_1 Solve system of linear equations by elimination method: 5/2x + 3/5y= 4/15 1/2x + 2/5y= 2/15
  17. Confectionery
    cukrovinky The village markets have 5 kinds of sweets, one weighs 31 grams. How many different ways a customer can buy 1.519 kg sweets.