# Quadrangular pyramid

The regular quadrangular pyramid has a base length of 6 cm and a side edge length of 9 centimeters. Calculate its volume and surface area.

**Correct result:****Showing 0 comments:**

Tips to related online calculators

Do you want to convert length units?

Tip: Our volume units converter will help you with the conversion of volume units.

Pythagorean theorem is the base for the right triangle calculator.

See also our trigonometric triangle calculator.

Tip: Our volume units converter will help you with the conversion of volume units.

Pythagorean theorem is the base for the right triangle calculator.

See also our trigonometric triangle calculator.

#### You need to know the following knowledge to solve this word math problem:

## Next similar math problems:

- Quadrangular pyramid

Calculate the surface area and volume of a regular quadrangular pyramid: sides of bases (bottom, top): a1 = 18 cm, a2 = 6cm angle α = 60 ° (Angle α is the angle between the side wall and the plane of the base.) S =? , V =? - Tetrahedral pyramid

A regular tetrahedral pyramid is given. Base edge length a = 6.5 cm, side edge s = 7.5 cm. Calculate the volume and the area of its face (side area). - Quadrilateral pyramid

In a regular quadrilateral pyramid, the height is 6.5 cm and the angle between the base and the side wall is 42°. Calculate the surface area and volume of the body. Round calculations to 1 decimal place. - Quadrangular pyramid

Given is a regular quadrangular pyramid with a square base. The body height is 30 cm and volume V = 1000 cm³. Calculate its side a and its surface area. - The tent

The tent shape of a regular quadrilateral pyramid has a base edge length a = 2 m and a height v = 1.8 m. How many m^{2}of cloth we need to make the tent if we have to add 7% of the seams? How many m^{3}of air will be in the tent? - Tetrahedral pyramid

It is given a regular tetrahedral pyramid with base edge 6 cm and the height of the pyramid 10 cm. Calculate the length of its side edges. - Pyramid 8

Calculate the volume and the surface area of a regular quadrangular pyramid with the base side 9 cm and side wall with the base has an angle 75°. - Quadrilateral pyramid

A regular quadrilateral pyramid has a volume of 24 dm^{3}and a base edge a = 4 dm. Calculate: a/height of the pyramid b/sidewall height c/surface of the pyramid - Quadrilateral prism

The height of a regular quadrilateral prism is v = 10 cm, the deviation of the body diagonal from the base is 60°. Determine the length of the base edges, the surface, and the volume of the prism. - Four sided prism

Calculate the volume and surface area of a regular quadrangular prism whose height is 28.6cm and the body diagonal forms a 50 degree angle with the base plane. - Hexagon cut pyramid

Calculate the volume of a regular 6-sided cut pyramid if the bottom edge is 30 cm, the top edge us 12 cm, and the side edge length is 41 cm. - 9-gon pyramid

Calculate the volume and the surface of a nine-sided pyramid, the base of which can be inscribed with a circle with radius ρ = 7.2 cm and whose side edge s = 10.9 cm. - Digging a pit

The pit has the shape of a regular quadrilateral truncated pyramid. The edges of the bases are 14m and 10m long. The sidewalls form an angle of 135° with a smaller base. Determine how many m^{3}of soil were excavated when digging the pit? - The tent

Calculate how much cover (without a floor) is used to make a tent that has the shape of a regular square pyramid. The edge of the base is 3 m long and the height of the tent is 2 m. - Quadrilateral pyramid,

A quadrilateral pyramid, which has a rectangular base with dimensions of 24 cm, 13 cm. The height of the pyramid is 18cm. Calculate 1/the area of the base 2/casing area 3/pyramid surface 4/volume of the pyramid - Pyramid

The pyramid has a base rectangle with a = 6cm, b = 8cm. The side edges are the same and their length = 12.5 cm. Calculate the surface of the pyramid. - Quadrangular prism

Calculate the volume and surface area of a regular quadrangular prism 35 cm high and the base diagonal of 22 cm.