# Equation + third power - practice problems

#### Number of problems found: 68

- Jointly and cube power

If y varies jointly as x and the cube of z and y=16 when x=4 and z=2, find an equation that represent this relationship - Two expressions

When x = 3 and y = 5, by how much does the value of 3x² – 2y exceed the value of 2x² – 3y? - Given 2

Given g(x)=x^{2}+x+1 where x=t². What is g(t²)? - Two gardens

The flower garden has a square shape. The new garden has the shape of a rectangle, and one dimension is 8 m smaller, and the other is twice as large as in a square garden. What were the original garden dimensions and the new garden if both gardens' area i - The sum

The sum of the squares of two immediately following natural numbers is 1201. Find these numbers. - Find x 2

Find x, y, and z such that x³+y³+z³=k, for each k from 1 to 100. Write down the number of solutions. - Derivative problem

The sum of two numbers is 12. Find these numbers if: a) The sum of their third powers is minimal. b) The product of one with the cube of the other is maximal. c) Both are positive and the product of one with the other power of the other is maximal. - 1 page

One page is torn from the book. The sum of the page numbers of all the remaining pages is 15,000. What numbers did the pages have on the page that was torn from the book? - Magnified cube

If the lengths of the cube's edges are extended by 5 cm, its volume will increase by 485 cm³. Determine the surface of both the original and the magnified cube. - Cuboid and ratio

Find the dimensions of a cuboid having a volume of 810 cm³ if the lengths of its edges coming from the same vertex are in ratio 2: 3: 5 - Suppose

Suppose you know that the length of a line segment is 15, x2=6, y2=14 and x1= -3. Find the possible value of y1. Is there more than one possible answer? Why or why not? - One third power

Which equation justifies why ten to the one-third power equals the cube root of ten? - Uboid volume

Calculate the cuboid volume if the walls are 30cm², 35cm², 42cm² - Secret treasure

Scouts have a tent in the shape of a regular quadrilateral pyramid with a side of the base 4 m and a height of 3 m. Find the container's radius r (and height h) so that they can hide the largest possible treasure. - Divide 8

Divide 6840 by x y and z, in such a way that x has twice as much as y, who has half as much as z - Three members GP

The sum of three numbers in GP (geometric progression) is 21 and the sum of their squares is 189. Find the numbers. - The mowers

The mowers were to mow two meadows, one twice as big as the other. In the first half of the day, they divided into two equal groups. One continued to mow a larger meadow and cut it all by the end of the day. The second group mowed a smaller meadow but did - Four pavers

Four pavers would pave the square in 18 days. How many pavers do you need to add to done work in 12 days? - Completing square

Solve the quadratic equation: m^{2}=4m+20 using completing the square method - Two pipes

How long will the pool be filled with a double supply pipe if it takes the pool to fill the first pipe by 4 hours longer and the second pipe 9 hours longer than both pipes open at the same time?

Do you have an exciting math question or word problem that you can't solve? Ask a question or post a math problem, and we can try to solve it.

Do you have a linear equation or system of equations and looking for its solution? Or do you have a quadratic equation? Equations practice problems. Third power - practice problems.