Kombinačné číslo kalkulačka n=1523, k=499 výsledok
Kalkulačka vypočíta koľkými rôznymi spôsobmi sa dajú vybrať k prvkov z množiny n prvkov bez uvažovania poradia a bez opakovania. Takéto číslo sa nazýva aj kombinačné číslo alebo n nad k číslo alebo binomický koeficient. Pozrite si aj všeobecnú kombinatorickú kalkulačku.Výpočet:
Ck(n)=(kn)=k!(n−k)!n! n=1523 k=499 C499(1523)=(4991523)=499!(1523−499)!1523!≈4,904×10416
Počet kombinácií: 4.904565E+416
490456590329727935049278071956847158684250011404985850466
794339384756161749542602905059596754782560016743049668894817
598568517017674109734224689288699153915821563237866708479936
988383801618311762509389281857624788047296543219100613498520
761608776728258108089801672965303753518986976844755722760293
518499128624208525585988855146690153720575763795261934213143
548186004632907315548527024254361124774317178259243562393125
794339384756161749542602905059596754782560016743049668894817
598568517017674109734224689288699153915821563237866708479936
988383801618311762509389281857624788047296543219100613498520
761608776728258108089801672965303753518986976844755722760293
518499128624208525585988855146690153720575763795261934213143
548186004632907315548527024254361124774317178259243562393125
Trošku teórie - základy kombinatoriky
Kombinácie
Kombinácia k-tej triedy z n prvkov je neusporiadaná k-prvková skupina vytvorená z množiny n prvkov. Prvky sa neopakujú a nezáleži na poradí prvkov v skupine. Neusporiadané skupiny sa v matematike volajú množiny resp. podmnožiny. Ich počet je kombinačné číslo a vypočíta sa takto:Ck(n)=(kn)=k!(n−k)!n!
Typický príklad na kombinácie je že máme 15 žiakov a máme vybrať trojice. Koľko ich bude?
Základy kombinatoriky v slovných úlohách
- Rodina
Aká je pravdepodobnosť že rodina s 3 deťmi má: presne 2 dievčatá? 3 dievčatá a 0 chlapcov? Uvažujte pravdepodobnosť narodenia dievčaťa 48,82 % a chlapca 51,18%.
- Hracia kocka
Koľkokrát je nutné hodiť hracou kockou, aby pravdepodobnosť hodu aspoň jednej štvorky bola väčšia ako 55%?
- Zasadací poriadok
Koľkými spôsobmi sa môže posadiť 6 osôb na 3 stoličiek (napr. miestenky vo vlaku)?
- Hracie karty
Koľkými spôsobmi možno zamiešať 9 hracích kariet?
- Šach
Koľko spôsobmi je možno na klasickej šachovnici so 64 poliami vybrať 3 polia tak, aby polia nemali rovnakú farbu?
- Dvaja doktori
Lekár A určí správnu diagnózu s pravdepodobnosťou 80% a lekár B s pravdepodobnosťou 88%. Vypočítajte s akou pravdepodobnosťou pacient je si istý diagnózou ak ide na vyšetrenie k obom lekárom.
- PSČ
Koľko 4-číslicových kódov je možných v prípade, že prvé číslo nesmie byť nula?
- Variácie 2. triedy
Z koľko prvkov je možné vytvoriť 3080 variácií druhej triedy?
- Akordy
Koľko 4-tones akordov (akord = súzvuk súčasne znejúcich rôznych tónov) je možné zahrať z 7 tónov?
- Hostia
Koľkými spôsobmi je možné rozsadiť 2 hostí do 2 kresiel v jednom rade?
- Skúšanie
V triede je 26 žiakov. Koľkými spôsobmi je možné vybrať 5 žiakov na vyskúšanie?
- Bity, bajty
Vypočítajte koľko rôznych čísel možno zakódovať v 16-bitovom binárnom slove?
- Podmnožiny 3
Koľko 20 prvkových podmnožín možno vytvoriť z 25 prvkovej množiny?
- Pravdepodobnosť javu
Pravdepodobnosť že nastane jav M pri 10 nezávislých pokusoch je 0,49. Aká je pravdepodobnosť, že jav M nastane pri jednom pokuse (ak pri každom pokuse je pravdepodobnosť rovnaká)?
slovné úlohy - viacej »