Fraction calculator
This fraction calculator performs all fraction operations - addition, subtraction, multiplication, and division — and evaluates expressions with fractions. Each calculation includes detailed step-by-step explanations.
The result:
1 2/4 * 3 5/6 = 23/4 = 5 3/4 = 5.75
Spelled out: twenty-three quarters (or five and three quarters).How do we solve fractions step by step?
- Conversion a mixed number 1 2/4 to a improper fraction: 1 2/4 = 1 2/4 = 1 · 4 + 2/4 = 4 + 2/4 = 6/4
To find a new numerator:
a) Multiply the whole number 1 by the denominator 4. Whole number 1 equally 1 * 4/4 = 4/4
b) Add the answer from the previous step 4 to the numerator 2. New numerator is 4 + 2 = 6
c) Write a previous answer (new numerator 6) over the denominator 4.
One and two quarters is six quarters. - Conversion a mixed number 3 5/6 to a improper fraction: 3 5/6 = 3 5/6 = 3 · 6 + 5/6 = 18 + 5/6 = 23/6
To find a new numerator:
a) Multiply the whole number 3 by the denominator 6. Whole number 3 equally 3 * 6/6 = 18/6
b) Add the answer from the previous step 18 to the numerator 5. New numerator is 18 + 5 = 23
c) Write a previous answer (new numerator 23) over the denominator 6.
Three and five sixths is twenty-three sixths. - Multiple: 6/4 * 23/6 = 6 · 23/4 · 6 = 138/24 = 23 · 6/4 · 6 = 23/4
Multiply both numerators and denominators. Result fraction keep to lowest possible denominator GCD(138, 24) = 6. In the following intermediate step, cancel by a common factor of 6 gives 23/4.
In other words, six quarters multiplied by twenty-three sixths equals twenty-three quarters.
Rules for expressions with fractions:
Fractions - Use a forward slash to separate the numerator and denominator. For example, for five-hundredths, enter 5/100.Mixed numbers Leave one space between the whole number and the fraction part, and use a forward slash for the fraction. For example, enter 1 2/3 . For negative mixed numbers, write the negative sign before the whole number, such as -5 1/2.
Division of fractions - Since the forward slash is used for both fraction lines and division, use a colon (:) to divide fractions. For example, to divide 1/2 by 1/3, enter 1/2 : 1/3.
Decimals Enter decimal numbers using a decimal point (.), and they will be automatically converted to fractions. For example, enter 1.45.
Math Symbols
| Symbol | Symbol name | Symbol Meaning | Example |
|---|---|---|---|
| + | plus sign | addition | 1/2 + 1/3 |
| - | minus sign | subtraction | 1 1/2 - 2/3 |
| * | asterisk | multiplication | 2/3 * 3/4 |
| × | times sign | multiplication | 2/3 × 5/6 |
| : | division sign | division | 1/2 : 3 |
| / | division slash | division | 1/3 / 5 |
| : | colon | complex fraction | 1/2 : 1/3 |
| ^ | caret | exponentiation / power | 1/4^3 |
| () | parentheses | calculate expression inside first | -3/5 - (-1/4) |
Examples:
• adding fractions: 2/4 + 3/4• subtracting fractions: 2/3 - 1/2
• multiplying fractions: 7/8 * 3/9
• dividing fractions: 1/2 : 3/4
• reciprocal of a fraction: 1 : 3/4
• square of a fraction: 2/3 ^ 2
• cube of a fraction: 2/3 ^ 3
• exponentiation of a fraction: 1/2 ^ 4
• fractional exponents: 16 ^ 1/2
• adding fractions and mixed numbers: 8/5 + 6 2/7
• dividing integer and fraction: 5 ÷ 1/2
• complex fractions: 5/8 : 2 2/3
• decimal to fraction: 0.625
• fraction to decimal: 1/4
• fraction to percent: 1/8 %
• comparing fractions: 1/4 2/3
• square root of a fraction: sqrt(1/16)
• expression with brackets: 1/3 * (1/2 - 3 3/8)
• compound fraction: 3/4 of 5/7
• multiplying fractions: 2/3 of 3/5
• divide to find the quotient: 3/5÷2/3
Order of Operations
Ever wondered why calculators don't just work left to right? This calculator follows the mathematical order of operations — a set of rules that ensures everyone solves expressions the same way, every time.
Popular Memory Tricks
Different regions use different mnemonics to remember this order:
* PEMDAS - Parentheses, Exponents, Multiplication, Division, Addition, Subtraction
* BEDMAS - Brackets, Exponents, Division, Multiplication, Addition, Subtraction
* BODMAS - Brackets, Order (or "Of"), Division, Multiplication, Addition, Subtraction
* GEMDAS - Grouping symbols (parentheses, brackets, braces: (){}), Exponents, Multiplication, Division, Addition, Subtraction
The Golden Rules
Rule 1: Multiplication and division always come before addition and subtraction. Think of them as the VIPs that skip to the front of the line!
Rule 2: When operations have equal priority (like × and ÷, or + and −), work from left to right—just like reading a book.
Rule 3: Parentheses change the natural order of evaluation of operations.
Fractions in word problems:
- Compare two fractions
Find which is the larger of the two fractions: 11/32, 7/24, by expressing the numbers as a) fractions with the same denominator, b) decimals. - Subtract and compare
1-5/8 is the same as 11/8, true or false? - Small and large bread
Kipton's aunt bakes a large loaf of bread and a small loaf of bread. She cuts each loaf into tenths and gives Kipton 2 tenths of each loaf to take home. Kipton writes the equation 2/10 + 2/10 = 4/10 to show the amount of bread he takes home. Explain Kipto - The cost 7
The cost of a pen is Rs. 20/3, and that of a pencil is 25/6. Which costs more and by how much? - 1/12 fraction
Which statement about determining the quotient 1/12÷3 is true? A. Because 1/36×3=1/12, 1/12 divided by 3 is 1/36. B. Because 1/4×3=1/12, 1/12 divided by 3 is 1/4. C. Because 3/4×3=1/12, 1/12 divided by 3 is 3/4. D. Because 4/3×3=1/12, 1/12 divided by 3 is - The fuel
The car's fuel was ¾ full at the beginning of the week. At the end of the week, there was ⅛ of a tank left. a. Did the car use more or less than ½ of a fuel tank? How do you know? b. How much more or less than ½ of a tank did it use? Show your work using - Dividends
The three friends divided the win by the invested money. Karlos got three-eighths, John 320 permille, and the rest got Martin. Who got the most, and which got the least?
more math problems »
Last Modified: January 30, 2026
