# Fraction calculator

This fraction calculator performs all fraction operations and evaluates expressions with fractions. It also shows detailed step-by-step information about the fraction calculation procedure. The calculator helps find value from multiple fraction operations with two, three, or more fractions and numbers in one expression.

## The result:

### 6 4/12 - 5/10 = 35/6 = 5 5/6 ≅ 5.8333333

The spelled result in words is thirty-five sixths (or five and five sixths).### How do we solve fractions step by step?

- Conversion a mixed number 6 4/12 to a improper fraction: 6 4/12 = 6 4/12 = 6 · 12 + 4/12 = 72 + 4/12 = 76/12

To find a new numerator:

a) Multiply the whole number 6 by the denominator 12. Whole number 6 equally 6 * 12/12 = 72/12

b) Add the answer from the previous step 72 to the numerator 4. New numerator is 72 + 4 = 76

c) Write a previous answer (new numerator 76) over the denominator 12.

Six and four twelfths is seventy-six twelfths. - Subtract: 76/12 - 5/10 = 76 · 5/12 · 5 - 5 · 6/10 · 6 = 380/60 - 30/60 = 380 - 30/60 = 350/60 = 10 · 35/10 · 6 = 35/6

It is suitable to adjust both fractions to a common (equal, identical) denominator for adding, subtracting, and comparing fractions. The common denominator you can calculate as the least common multiple of both denominators - LCM(12, 10) = 60. It is enough to find the common denominator (not necessarily the lowest) by multiplying the denominators: 12 × 10 = 120. In the following intermediate step, cancel by a common factor of 10 gives 35/6.

In other words - seventy-six twelfths minus five tenths is thirty-five sixths.

### Rules for expressions with fractions:

**Fractions**- use a forward slash to divide the numerator by the denominator, i.e., for five-hundredths, enter

**5/100**. If you use mixed numbers, leave a space between the whole and fraction parts.

**Mixed numerals**(mixed numbers or fractions) keep one space between the integer and

fraction and use a forward slash to input fractions i.e.,

**1 2/3**. An example of a negative mixed fraction:

**-5 1/2**.

Because slash is both sign for fraction line and division, use a colon (:) as the operator of division fractions i.e.,

**1/2 : 1/3**.

Decimals (decimal numbers) enter with a decimal point

**.**and they are automatically converted to fractions - i.e.

**1.45**.

### Math Symbols

Symbol | Symbol name | Symbol Meaning | Example |
---|---|---|---|

+ | plus sign | addition | 1/2 + 1/3 |

- | minus sign | subtraction | 1 1/2 - 2/3 |

* | asterisk | multiplication | 2/3 * 3/4 |

× | times sign | multiplication | 2/3 × 5/6 |

: | division sign | division | 1/2 : 3 |

/ | division slash | division | 1/3 / 5 |

: | colon | complex fraction | 1/2 : 1/3 |

^ | caret | exponentiation / power | 1/4^3 |

() | parentheses | calculate expression inside first | -3/5 - (-1/4) |

#### Examples:

• adding fractions: 2/4 + 3/4• subtracting fractions: 2/3 - 1/2

• multiplying fractions: 7/8 * 3/9

• dividing Fractions: 1/2 : 3/4

• reciprocal of a fraction: 1 : 3/4

• square of a fraction: 2/3^2

• cube of a fraction: 2/3^3

• exponentiation of a fraction: 1/2^4

• fractional exponents: 16 ^ 1/2

• adding fractions and mixed numbers: 8/5 + 6 2/7

• dividing integer and fraction: 5 ÷ 1/2

• complex fractions: 5/8 : 2 2/3

• decimal to fraction: 0.625

• Fraction to Decimal: 1/4

• Fraction to Percent: 1/8 %

• comparing fractions: 1/4 2/3

• multiplying a fraction by a whole number: 6 * 3/4

• square root of a fraction: sqrt(1/16)

• reducing or simplifying the fraction (simplification) : 4/22 - dividing the numerator and denominator of a fraction by the same non-zero number - equivalent fraction

• expression with brackets: 1/3 * (1/2 - 3 3/8)

• compound fraction: 3/4 of 5/7

• fractions multiple: 2/3 of 3/5

• divide to find the quotient: 3/5 ÷ 2/3

The calculator follows well-known rules for

**the order of operations**. The most common mnemonics for remembering this order of operations are:

**PEMDAS**- Parentheses, Exponents, Multiplication, Division, Addition, Subtraction.

**BEDMAS**- Brackets, Exponents, Division, Multiplication, Addition, Subtraction

**BODMAS**- Brackets, Of or Order, Division, Multiplication, Addition, Subtraction.

**GEMDAS**- Grouping Symbols - brackets (){}, Exponents, Multiplication, Division, Addition, Subtraction.

**MDAS**- Multiplication and Division have the same precedence over Addition and Subtraction. The MDAS rule is the order of operations part of the PEMDAS rule.

Be careful; always do

**multiplication and division**before

**addition and subtraction**. Some operators (+ and -) and (* and /) have the same priority and must be evaluated from left to right.

## Fractions in word problems:

- Fraction operations

For items - fractions 1/6 - 1/9 perform the indicated operation/s. Write your answer in improper fractions, and it must be in the simplest form. - The cat

The cat starts with 4/6 of a cup in his bowl. It eats 1/4 of a cup of food. How much food is left? - Marbles 82374

How many marbles do I have if I am missing a fifth of 15 marbles? - You have 4

You have eaten ⅔ of a pizza. Your friend eats what is left. How much of the original pizza is left?

- Fraction subtraction

Find the difference. Reduce the answer to the simplest form: 1.) ¾ - 1/8 = 2.) ½ - 1/8 = 3.) ½ - 1/6 = 4.) 7/8 - ¾ = 5.) 1/5 - 1/10 - Subtract 19

Subtract as indicated. 11/10 - (- 2/5) - Evaluate 38

Evaluate the expression shown below and write your answer as a fraction in simplest form. (5)/(6) - (3)/(8) Transcription: start fraction, 5, divided by, 6, end fraction, minus, start fraction, 3, divided by, 8, end fraction - On Monday 3

On Monday, James had a pizza for lunch. He only ate 2/3 and left the rest for supper. At supper, he only had 1/2 of the pizza that was left over from lunch. How much does he have left after supper - Mr Peter

Mr Peter bought a pizza. He ate 2/5. His son ate 1/5, and the rest his wife ate. What amount of pizza did his wife eat?

- A chocolate 2

A chocolate cake is cut into twelve equal pieces. Mr. Greedy eats five pieces at break time with his mug of tea. What fraction of the cake is left? - Sarah 5

Sarah had ten cookies and ate one-half of a cookie. How much would she have left? - Terrell

Terrell goes apple-picking. He uses 3/10 of his apples. Then he uses 5/10. What fraction of his apples does he have left? - A less than B

What is 3/5 less than 11/12? (Answer should be in proper or improper only: Example 1/2, -1/2, 3/2, and -3/2) - A man 9

A man earns $2400 in his monthly salary. He spends 3/5 of his salary on food and rent. This month he decided to buy his family presents. What fraction of his money does he spend on presents?

more math problems »