Distance of points

A regular quadrilateral pyramid ABCDV is given, in which edge AB = a = 4 cm and height v = 8 cm. Let S be the center of the CV. Find the distance of points A and S.

Correct answer:

x =  5.831 cm

Step-by-step explanation:

a=4 cm v=8 cm  u=2 a=2 4=4 2 cm5.6569 cm  s=v2+(u/2)2=82+(5.6569/2)2=6 2 cm8.4853 cm s2=s/2=8.4853/2=3 2 cm4.2426 cm  ACV=arctan(u/2v)=arctan(5.6569/28)1.231 rad  x2=u2+s222 u s2 cos(ACV)  x=u2+s222 u s2 cos(ACV)=5.65692+4.242622 5.6569 4.2426 cos1.231=34=5.831 cm



Did you find an error or inaccuracy? Feel free to write us. Thank you!







Tips for related online calculators
The Pythagorean theorem is the base for the right triangle calculator.
Cosine rule uses trigonometric SAS triangle calculator.
See also our trigonometric triangle calculator.

 
We encourage you to watch this tutorial video on this math problem: video1   video2

Related math problems and questions: