Prove
Prove that k1 and k2 are the equations of two circles. Find the equation of the line that passes through the centers of these circles.
k1: x2+y2+2x+4y+1=0
k2: x2+y2-8x+6y+9=0
k1: x2+y2+2x+4y+1=0
k2: x2+y2-8x+6y+9=0
Correct answer:

Tips for related online calculators
The line slope calculator is helpful for basic calculations in analytic geometry. The coordinates of two points in the plane calculate slope, normal and parametric line equation(s), slope, directional angle, direction vector, the length of the segment, intersections of the coordinate axes, etc.
Are you looking for help with calculating roots of a quadratic equation?
Do you have a linear equation or system of equations and looking for its solution? Or do you have a quadratic equation?
See also our right triangle calculator.
See also our trigonometric triangle calculator.
Are you looking for help with calculating roots of a quadratic equation?
Do you have a linear equation or system of equations and looking for its solution? Or do you have a quadratic equation?
See also our right triangle calculator.
See also our trigonometric triangle calculator.
You need to know the following knowledge to solve this word math problem:
- geometry
- analytic geometry
- line
- algebra
- quadratic equation
- equation
- planimetrics
- Pythagorean theorem
- right triangle
- circle
- triangle
- basic functions
- reason
Themes, topics:
Grade of the word problem:
Related math problems and questions:
- Line
Write an equation of a line parallel to To 9x + 3y = 8 That Passes Through The Point (-1, -4). Write in form ax+by=c.
- Geometry: 78014
Good day, Even though it is a trivial task, I don’t know how to deal with it. This is analytic geometry: Find all integers a, b, and c such that the line given by the equation ax+by=c passes through the points [4,3] and [−2,1]. Thank you for your answer
- Line in normal form
Try to find the equation of a line given two points in the form Ax+By=C. passes through the points: (2,1) and (-2,2)
- Circle
Write the equation of a circle that passes through the point [0,6] and touches the X-axis point [5,0]: (x-x_S)²+(y-y_S)²=r²
- Intersections 3
Find the intersections of the circles x² + y² + 6 x - 10 y + 9 = 0 and x² + y² + 18 x + 4 y + 21 = 0
- Sphere equation
Obtain the equation of a sphere. Its center is on the line 3x+2z=0=4x-5y and passes through the points (0,-2,-4) and (2,-1,1).
- Intersection of Q2 with line
The equation of a curve C is y=2x² - 8x +9, and the equation of a line L is x + y=3. (1) Find the x-coordinates of the points of intersection of L and C. (ii) show that one of these points is also the
- Curve and line
The equation of a curve C is y=2x² -8x+9, and the equation of a line L is x+ y=3 (1) Find the x coordinates of the points of intersection of L and C. (2) Show that one of these points is also the stationary point of C?
- Perpendicular 28823
Points A(1,2), B(4,-2) and C(3,-2) are given. Find the parametric equations of the line that: a) It passes through point C and is parallel to the line AB, b) It passes through point C and is perpendicular to line AB.
- Equation of the circle
Find the equation of the circle inscribed in the rhombus ABCD where A[1, -2], B[8, -3], and C[9, 4].
- Touch x-axis
Find the equations of circles that pass through points A (-2; 4) and B (0; 2) and touch the x-axis.
- Three points 4
The line passed through three points - see table: x y -6 4 -4 3 -2 2 Write line equation in y=mx+b form.
- Function 3
Function f(x)=a(x-r)(x-s) the graph of the function has x-intercept at (-4, 0) and (2, 0) and passes through the point (-2,-8). Find constant a, r, s.
- Angle between lines
Calculate the angle between these two lines: p: -8x +4y +5 =0 q: 10x +10y -7=0
- General line equations
In all examples, write the GENERAL EQUATION OF a line that is given in some way. A) the line is given parametrically: x = - 4 + 2p, y = 2 - 3p B) the slope form gives the line: y = 3x - 1 C) the line is given by two points: A [3; -3], B [-5; 2] D) the lin
- Coordinates of the vertices
Calculate the coordinates of the vertices of a triangle if the equations of its sides are 7x-4y-1 = 0 x-2y + 7 = 0 2x + y + 4 = 0
- Find the 10
Find the value of t if 2tx+5y-6=0 and 5x-4y+8=0 are perpendicular and parallel. What angle does each line make with the x-axis, and find the angle between the lines?