Body volume + angle - math problems

Number of problems found: 38

  • Angle of cone
    kuzel2 The cone has a base diameter of 1.5 m. The angle at the main apex of the axial section is 86°. Calculate the volume of the cone.
  • Hexa pyramid
    hexa_pyramid_1 The base of the regular pyramid is a hexagon, which can be described by a circle with a radius of 1 m. Find the volume of the pyramid 2.5 m high.
  • Cone side
    kuzel3 Calculate the volume and area of the cone whose height is 10 cm and the axial section of the cone has an angle of 30 degrees between height and the cone side.
  • Octagonal pyramid
    octagonl_pyramid2 Find the volume of a regular octagonal pyramid with height v = 100 and the angle of the side edge with the plane of the base is α = 60°.
  • Tetrahedral pyramid
    ihlan Determine the surface of a regular tetrahedral pyramid when its volume is V = 120 and the angle of the sidewall with the base plane is α = 42° 30´.
  • Prism diagonal
    hranol222_2 The body diagonal of a regular square prism has an angle of 60 degrees with the base, the edge length is 10 cm. What is the volume of the prism?
  • Angle of diagonal
    hranol_9 Angle between the body diagonal of a regular quadrilateral and its base is 60°. The edge of the base has a length of 10cm. Calculate the body volume.
  • Water channel
    trapezium_prism_2 The cross section of the water channel is a trapezoid. The width of the bottom is 19.7 m, the water surface width is 28.5 m, the side walls have a slope of 67°30' and 61°15'. Calculate how much water flows through the channel in 5 minutes if the water flo
  • Square pyramid
    pyramid_4 Calculate the volume of the pyramid with the side 5cm long and with a square base, side-base has angle of 60 degrees.
  • Hexagonal prism
    hexa_prism The base of the prism is a regular hexagon consisting of six triangles with side a = 12 cm and height va = 10.4 cm. The prism height is 5 cm. Find the volume and surface of the prism.
  • Children pool
    hexagon_prism2 The bottom of the children's pool is a regular hexagon with a = 60 cm side. The distance of opposing sides is 104 cm, the height of the pool is 45 cm. A) How many liters of water can fit into the pool? B) The pool is made of a double layer of plastic film
  • Four sided prism
    hranol4sreg Calculate the volume and surface area of a regular quadrangular prism whose height is 28.6cm and the body diagonal forms a 50 degree angle with the base plane.
  • Hexagon rotation
    hexagnos A regular hexagon of side 6 cm is rotated through 60° along a line passing through its longest diagonal. What is the volume of the figure thus generated?
  • Hexagonal prism 2
    hranol6b The regular hexagonal prism has a surface of 140 cm2 and height of 5 cm. Calculate its volume.
  • Roof 8
    veza_1 How many liters of air are under the roof of tower which has the shape of a regular six-sided pyramid with a 3,6-meter-long bottom edge and a 2,5-meter height? Calculate the supporting columns occupy about 7% of the volume under the roof.
  • Cone
    valec_8 The rotating cone volume is 9.42 cm3, with a height 10 cm. What angle is between the side of the cone and its base?
  • Hexagonal pyramid
    jehlan_6 Regular hexagonal pyramid has dimensions: length edge of the base a = 1.8 dm and the height of the pyramid = 2.4 dm. Calculate the surface area and volume of a pyramid.
  • Octahedron
    octahedron All walls of regular octahedron are identical equilateral triangles. ABCDEF octahedron edges have a length d = 6 cm. Calculate the surface area and volume of this octahedron.
  • Decagon prism
    10gon_1 A regular decagon of side a = 2 cm is the base of the perpendicular prism, the side walls are squares. Find the prism volume in cm3, round to two decimal places.
  • Hexa prism
    hexagon Determine the volume of hex prism with edge base 4 cm. The body height is 28 cm.

Do you have an interesting mathematical word problem that you can't solve it? Submit a math problem, and we can try to solve it.



We will send a solution to your e-mail address. Solved examples are also published here. Please enter the e-mail correctly and check whether you don't have a full mailbox.

Please do not submit problems from current active competitions such as Mathematical Olympiad, correspondence seminars etc...