Side wall planes

Find the volume and surface of a cuboid whose side c is 30 cm long and the body diagonal forms angles of 24°20' and 45°30' with the planes of the side walls.

Correct answer:

S =  5217.801 cm2
V =  24681.8833 cm3

Step-by-step explanation:

c=30 cm α=24+20/60=37324.3333  β=45+30/60=291=45.5   t1=tanα=tan24.333333333333° =0.452218=0.45222 t2=tanβ=tan45.5° =1.017607=1.01761  d2=a2+b2+c2 u12=a2+c2 u22=b2+c2  tanα=a:u2=t1  t12 (b2+c2)=a2  tanβ=b:u1=t2 t22 (a2+c2)=b2  t12 (b2+c2)=a2 t22 (a2+c2)=b2  t22 (t12 (b2+c2)+c2)=b2  t22 (t12 (x+c2)+c2)=x 1.01760739297212 (0.45221787913672 (x+302)+302)=x  0.788234x=1122.561608  x=0.788234131122.56160768=1424.1474246  x=1424.147425  b=x=1424.147437.7379 cm a=t12 (b2+c2)=0.45222 (37.73792+302)21.8012 cm  S=2 (a b+b c+a c)=2 (21.8012 37.7379+37.7379 30+21.8012 30)=5217.801 cm2
V=a b c=21.8012 37.7379 3024681.8833 cm3   Verifying Solution:  u1=a2+c2=21.80122+30237.0849 cm u2=b2+c2=37.73792+30248.2094 cm A=π180°arctan(a/u2)=π180°arctan(21.8012/48.2094)=37324.3333  B=π180°arctan(b/u1)=π180°arctan(37.7379/37.0849)=291=45.5 

Did you find an error or inaccuracy? Feel free to write us. Thank you!

Tips for related online calculators
Are you looking for help with calculating roots of a quadratic equation?
Do you have a linear equation or system of equations and looking for its solution? Or do you have a quadratic equation?
Tip: Our volume units converter will help you convert volume units.
See also our right triangle calculator.
Most natural application of trigonometry and trigonometric functions is a calculation of the triangles. Common and less common calculations of different types of triangles offers our triangle calculator. Word trigonometry comes from Greek and literally means triangle calculation.

We encourage you to watch this tutorial video on this math problem: video1   video2

Related math problems and questions: