Příklady pro středoškoláky - strana 163 z 225
Počet nalezených příkladů: 4490
- Logická úloha o lodích
1. Řecká loď odjíždí o 6 a veze kávu. 2. Prostřední loď má černý komin. 3. Anglická loď odjíždí v devět. 4. Francouzská loď je vlevo o lodi vezoucí kávu a má modrý komín. 5. Vpravo od lodi vezoucí kakao je loď jedoucí do Marseille, 6. Brazilská lod jede d - Variace
Kolik máme dáno prvků jestliže variace třetí třídy bez opakování z nich utvořených je 10X více než variace druhé třídy. - Chlapci
Ve třídě je 18 dívek a 13 chlapců. Pro dozor o přestávkách se losem určí 4 žáci. Jaká je pravděpodobnost, že to budou sami chlapci? - AP - 11
Určte prvých 11 členov postupnosti, ak a12=676, d=29. - Prvky posloupnosti
Určete prvních 14 členů posloupnosti, pokud a15 = 225, d=-12 - Poměr čísel
Dvě čísla jsou v poměru 3:2. Pokud bychom každé z nich zvětšili o 5, byly by v poměru 4:3. Jaký je součet původních čísel? - Šestiúhelník
Rozděl pravidelný šestiúhelník na osm stejných dílů. - Trojúhelník KLB
Je dán rovnostranný trojúhelník ABC. Z bodu L který je středem strany BC tohoto trojúhelníku, je spuštěna kolmice k na stranu AB. Průsečík kolmice k a strany AB je označen jako bod K. Kolik % z obsahu trojúhelníku ABC tvoří trojúhelník KLB? - Spotřeba benzinu ve městě a na dálnici
Auto má při jízdě ve městě průměrnou spotřebu k litrů benzinu na 100 km, ale při jízdě na dálnici spotřebuje průměrně o 20 % litrů méně. Vyjádřete spotřebu auta, pokud ujede 25 km ve městě a 75 km po dálnici? Výsledek vyjádřete jako násobek k. - Objemy tří kvádrů
Vypočítejte součet objemů všech kvádrů, pro které platí, že velikosti jejich hran jsou v poměru 1:2:3 a jedna z hran má velikost 6 cm. - Obdélník a opsána kružnice
Obdélníku se stranami 6cm a 4cm byla opsána kružnice. Jakou část obsahu kruhu, určeného opsanou kružnicí zaujímá obdélník? Vyjádři v %. - Délka trubičky s glycerolem
Naměřená hodnota atmosférického tlaku je 96 000 Pa. Tuto hodnotu chceme ověřit trubičkou, která je na jednom konci uzavřena. Před měřením trubičku naplníme glycerolem (hustota glycerolu ρ = 1200 kg/m3). Jak dlouhá musí být trubička? - Soustava rovnic
Řešte následující soustavu rovnic o třech neznámých 3x+2y+3z=110 5x-y-4z=0 2x-3y+z=0 - Neznámé číslo z rovnice
Najděte neznámé číslo : (9+y) x 6 = 12 x 7 y= ? - Třisté místo
Dagmar psala na počítači čísla(bez mezer) 45678910111213141516.. . Kterou číslici napsala na třistém místě? Číslice tohoto velkého přirozeného čísla jsou připsána přirozená čísla od čtyřky 4-5-6-7-8-9-10-11-12-13-14-15 atd. - bez pomlček. - Počet dívek ve třídě
Do VII. B třídy chodí dívky a 15 chlapců. Na výlet šli všechny dívky a 13 chlapců. Bylo to celkem 92 % žáků třídy. Kolik dívek chodí do VII. B? - Věk dědových vnoučat
Na otázku: Kolik let mají tvoje dvě vnoučata? dědeček odpovídá: pokud k součinu čísel, která určují jejich věk, přičtu jejich součet, dostanu 14. Kolik let mají dědova vnoučata ? Uvažujte pouze v celých letech. - Rozdělení medu mezi vnuky
Starý otec je včelař a chce rozdělit svým třem vnukům med. Má sedm stejných nádob plných medu, sedm nádob naplněných do poloviny a sedm prázdných nádob. Jak má nádoby rozdělit (bez přelévání) mezi vnuky, aby každý dostal stejný počet nádob i stejné množst - Cena pláště, klobouku a galosí
Mladé zboží si koupil plášť, klobouk a galoše. Za všechno zaplatil 200 grošů. Plášť stál o 90 grošů více než klobouk a klobouk s pláštěm o 160 grošů více než galoše. Kolik grošů stál plášť, kolik klobouk a kolik galoše? - Nadmořská výška tatranského štítu
Turista vystoupil z chaty, která byla v nadmořské výšce 1367 m nad mořem, na vrchol tatranského štítu. Cesta tam a zpět mu trvala 6 hodin a 20 minut. Jakou nadmořskou výšku má vrchol hory, pokud turista překonal za jednu hodinu 300 výškových metrů směrem
Máš příklad z matematiky, který jsi tady nenašel vyřešený? Pošli nám příklad a my Ti ho zkusíme vypočítat.
