# Secret treasure

Scouts have a tent in the shape of a regular quadrilateral pyramid with a side of the base 4 m and a height of 3 m. Determine the radius r (and height h) of the container so that they can hide the largest possible treasure.

**Correct result:****Showing 0 comments:**

Tips to related online calculators

Looking for help with calculating roots of a quadratic equation?

Do you have a linear equation or system of equations and looking for its solution? Or do you have quadratic equation?

Tip: Our volume units converter will help you with the conversion of volume units.

Pythagorean theorem is the base for the right triangle calculator.

See also our trigonometric triangle calculator.

Do you have a linear equation or system of equations and looking for its solution? Or do you have quadratic equation?

Tip: Our volume units converter will help you with the conversion of volume units.

Pythagorean theorem is the base for the right triangle calculator.

See also our trigonometric triangle calculator.

#### You need to know the following knowledge to solve this word math problem:

**geometry**- similarity of triangles
**algebra**- quadratic equation
- equation
- expression of a variable from the formula
**arithmetic**- square root
- square (second power, quadratic)
**solid geometry**- cylinder
- pyramid
- body volume
**planimetrics**- Pythagorean theorem
- right triangle
- triangle
**basic functions**- maximum
- minimum
- derivation
**units**- volume
- high school

## Next similar math problems:

- The tent

The tent shape of a regular quadrilateral pyramid has a base edge length a = 2 m and a height v = 1.8 m. How many m^{2}of cloth we need to make the tent if we have to add 7% of the seams? How many m^{3}of air will be in the tent? - Digging a pit

The pit has the shape of a regular quadrilateral truncated pyramid. The edges of the bases are 14m and 10m long. The sidewalls form an angle of 135° with a smaller base. Determine how many m^{3}of soil were excavated when digging the pit? - Quadrilateral pyramid

In a regular quadrilateral pyramid, the height is 6.5 cm and the angle between the base and the side wall is 42°. Calculate the surface area and volume of the body. Round calculations to 1 decimal place. - Pyramid cut

We cut the regular square pyramid with a parallel plane to the two parts (see figure). The volume of the smaller pyramid is 20% of the volume of the original one. The bottom of the base of the smaller pyramid has a content of 10 cm^{2}. Find the area of the - Triangular prism

The triangular prism has a base in the shape of a right triangle, the legs of which is 9 cm and 40 cm long. The height of the prism is 20 cm. What is its volume cm^{3}? And the surface cm^{2}? - Quadrangular pyramid

Given is a regular quadrangular pyramid with a square base. The body height is 30 cm and volume V = 1000 cm³. Calculate its side a and its surface area. - Triangular pyramid

A regular tetrahedron is a triangular pyramid whose base and walls are identical equilateral triangles. Calculate the height of this body if the edge length is a = 8 cm - The tent

Calculate how much cover (without a floor) is used to make a tent that has the shape of a regular square pyramid. The edge of the base is 3 m long and the height of the tent is 2 m. - Tent

Calculate how many liters of air will fit in the tent that has a shield in the shape of an isosceles right triangle with legs r = 3 m long the height = 1.5 m and a side length d = 5 m. - Cone

Circular cone of height 15 cm and volume 5699 cm^{3}is at one-third of the height (measured from the bottom) cut by a plane parallel to the base. Calculate the radius and circumference of the circular cut. - Billiard balls

A layer of ivory billiard balls of radius 6.35 cm is in the form of a square. The balls are arranged so that each ball is tangent to every one adjacent to it. In the spaces between sets of 4 adjacent balls other balls rest, equal in size to the original. - Similarity of squares

The ratio of the similarity of the squares ABCD and KLMN is 2.5. Square KLMN area is greater than area of a square ABCD with side a: ? - Quadrilateral pyramid

A regular quadrilateral pyramid has a volume of 24 dm^{3}and a base edge a = 4 dm. Calculate: a/height of the pyramid b/sidewall height c/surface of the pyramid - Distance of points

A regular quadrilateral pyramid ABCDV is given, in which edge AB = a = 4 cm and height v = 8 cm. Let S be the center of the CV. Find the distance of points A and S. - Floating barrel

Barrel (cylinder shape) floats on water, top of barrel is 8 dm above water and the width of surfaced barrel part is 23 dm. Barrel length is 24 dm. Calculate the volume of the barrel. - Body diagonal

The cuboid has a volume of 32 cm^{3}. Its side surface area is double as one of the square bases. What is the length of the body diagonal? - Tetrahedral pyramid

Determine the surface of a regular tetrahedral pyramid when its volume is V = 120 and the angle of the sidewall with the base plane is α = 42° 30´.