Lengths of medians from coordinates

There is a triangle ABC: A [-6.6; 1.2], B [3.4; -5.6], C [2.8; 4.2]. Calculate the lengths of its medians.

Correct answer:

t1 =  9.8843
t2 =  9.8478
t3 =  7.7666

Step-by-step explanation:

A=(6.6,1.2)=(6.6,1.2) B=(3.4,5.6)=(3.4,5.6) C=(2.8,4.2)=(2.8,4.2)  Tx=3Ax+Bx+Cx=3(6.6)+3.4+2.8=1520.1333 Ty=3Ay+By+Cy=31.2+(5.6)+4.2=1510.0667   TXAT = 2:1 t1 = AT+TX  AT=(TxAx)2+(TyAy)2=((0.1333)(6.6))2+((0.0667)1.2)26.5896  t1=23 AT=23 6.5896=9.8843
BT=(TxBx)2+(TyBy)2=((0.1333)3.4)2+((0.0667)(5.6))26.5652  t2=23 BT=23 6.5652=9.8478
CT=(TxCx)2+(TyCy)2=((0.1333)2.8)2+((0.0667)4.2)25.1777  t3=23 CT=23 5.1777=7.7666

Try calculation via our triangle calculator.

Did you find an error or inaccuracy? Feel free to write us. Thank you!

Tips for related online calculators
Looking for help with calculating arithmetic mean?
Looking for a statistical calculator?
Check out our ratio calculator.
Our vector sum calculator can add two vectors given by their magnitudes and by included angle.
See also our right triangle calculator.
See also our trigonometric triangle calculator.

We encourage you to watch this tutorial video on this math problem: video1   video2

Related math problems and questions: