Triangle

Plane coordinates of vertices: K[19, -4] L[9, 13] M[-20, 8] give Triangle KLM.

Calculate its area and its interior angles.

Correct answer:

S =  271.5
K =  42.4317 °
L =  110.6831 °
M =  26.8851 °

Step-by-step explanation:

x0=19 y0=4  x1=9 y1=13  x2=20 y2=8   LM = ML = (k0,k1) k0=x2x1=(20)9=29 k1=y2y1=813=5   KM = MK = (l0,l1) l0=x2x0=(20)19=39 l1=y2y0=8(4)=12   LK = KL = (m0,m1) m0=x0x1=199=10 m1=y0y1=(4)13=17  k=k02+k12=(29)2+(5)2=86629.4279 l=l02+l12=(39)2+122=3 18540.8044 m=m02+m12=102+(17)2=38919.7231  s=2k+l+m=229.4279+40.8044+19.723144.9777 S=s (sk) (sl) (sm)=44.9777 (44.977729.4279) (44.977740.8044) (44.977719.7231)=2543=27121=271.5
K = angle(KL, KM) K1=arccos(l ml0 m0l1 m1)=arccos(40.8044 19.7231(39) 1012 (17))0.7406 K=K1  °=K1 π180   °=0.7406 π180   °=42.432  °=42.4317=42°2554"
L = angle(LK, LM) L1=arccos(k mk0 m0+k1 m1)=arccos(29.4279 19.7231(29) 10+(5) (17))1.9318 L=L1  °=L1 π180   °=1.9318 π180   °=110.683  °=110.6831=110°4059"
M1=arccos(k lk0 l0+k1 l1)=arccos(29.4279 40.8044(29) (39)+(5) 12)0.4692 M=M1  °=M1 π180   °=0.4692 π180   °=26.885  °=26.8851=26°537"

Try calculation via our triangle calculator.




Did you find an error or inaccuracy? Feel free to write us. Thank you!



Showing 5 comments:
Math student
It's Great!. Am grateful.

6 years ago  1 Like
Math student
Still don't get it though

6 years ago  1 Like
Math student
I find it hard ... But I think I will get there. ... Slowly but surely ...

Math student
I still dont understand

Math student
I need one question





Tips for related online calculators
Need help calculating sum, simplifying, or multiplying fractions? Try our fraction calculator.
Our vector sum calculator can add two vectors given by their magnitudes and by included angle.
The Pythagorean theorem is the base for the right triangle calculator.
Do you want to convert time units like minutes to seconds?
Cosine rule uses trigonometric SAS triangle calculator.
See also our trigonometric triangle calculator.
Try conversion angle units angle degrees, minutes, seconds, radians, grads.

 
We encourage you to watch this tutorial video on this math problem: video1   video2   video3   video4

Related math problems and questions: