Príklady na pravouhlý trojuholník - strana 21 z 84
Počet nájdených príkladov: 1663
- Stred prepony
Pre vnútorné uhly trojuholnika ABC platí, že alfa beta a gama sú v pomere 1:2:3. Najdlhšia strana trojuholníka AB má dĺžku 30cm. Vypočítaj obvod trojuholnika CBS, ak S je stred strany AB
- Rybárska loď
Riešte graficky nasledujúcu úlohu. Rybárska loď vyšla z prístavu zavčas ráno a vydala sa severným smerom. Po 12 km plavby zmenila kurz a pokračovala 9 km na západ. Potom zakotvila a spustila siete. Ako ďaleko bola od miesta odchodu?
- Dve lietadlá
Z letiska štartujú súčasne dve lietadlá, ktorých dráhy letu sú na seba kolmé. Prvý letí rýchlosťou 680 km/h a druhé 840 km/h. Vypočítaj ako ďaleko budú od seba lietadla po polhodine letu.
- Obrátená Pytagorova veta
Dané sú dĺžky strán trojuholníka. Rozhodnite, ktorý z nich je pravouhlý: Δ ABC: 84 mm, 91 mm, 35 mm ... Δ DEF: 72 cm, 39 cm, 70 cm ... Δ GHI: 63 cm, 22 cm, 66 cm ... Δ JKL: 72 cm, 30 cm, 78 cm ... Δ MNO: 85 m, 36 m, 77 m ...
- Dve loďky
Dve loďky sú zamerané z výšky 150m nad hladinou jazera pod hĺbkovými uhlami 57° a 39°. Vypočítajte vzdialenosť oboch lodiek, ak zameriavací prístroj a obe loďku sú v rovine kolmej k hladine jazera.
- Z vyhliadky
Z vyhliadky na kostolnej veži vo výške 65m je vidno vrchol domu pod hĺbkovým uhlom alfa=45° a jeho spodok pod hĺbkovým uhlom beta=58°. Vypočítajte výšku domu a jeho vzdialenosť od kostola.
- Komín elektrárne
Z okna budovy vo výške 7,5 m je vidieť vrchol továrenského komína pod výškovým uhlom 76° 30 '. Päta komína je z rovnakého miesta vidieť pod hĺbkovým uhlom 5° 50 '. Aký vysoký je komín?
- Stĺp
Stĺpik má 13 metrov dlhý tieň na svahu stúpajúcom od stožiara stĺpika v smere uhla tieňa pri uhle 15°. Určte výšku stĺpiku, ak je slnko nad obzorom (horizontom) v uhle 33°. Použite sínusovú vetu .
- Fotoaparát
Fotoaparát s uhlom záberu 120° bol umiestnený horizontálne na vrchol pozorovateľne vo výške 30 m. Aká je dĺžka d úseku pri základni veže, ktorý nie je možné zachytiť fotoaparátom?
- Sever východ
Adam a Boris idú zo školy po dvoch navzájom kolmých cestách. Adamova priemerná rýchlost je 6 km/h , Borisova 8 km/h. Ako daleko budú od seba vzdušnou čiarou po 0,5 hodinou?
- Trojuholník PQR
V pravouhlom trojuholníku PQR je odvesna PQ rozdelená bodom X na dva úseky, z ktorých dlhší má dĺžku 25cm. Druhá odvesna PR má dĺžku 16 cm. Dĺžka prepony RX je 20 cm. Vypočítajte dĺžku p strany RQ. Výsledok zaokrúhli na 2 desatinné miesta. Jednotky "cm"
- Balistika
Balistický granát bol vystrelený pod uhlom 45 °. Prvú polovicu dráhy stúpal, druhú klesal. Ako ďaleko doletel a akú výšku dosiahol, ak bola jeho priemerná rýchlosť 1200km / h a od výstrelu po dopad letel 12s.
- Ťažisko a obsah
V trojuholníku ABC sú dané dĺžky jeho ťažníc tc=9, ta=6. Označme T priesečník ťažníc, S stred strany BC. Veľkosť uhla CTS je 60°. Vypočítajte dĺžku strany BC s presnosťou na 2 desatinné miesta
- Podobné trojuholníky 2
Pravouhlý trojuholník XYZ je podobný s trojuholníkom ABC, ktorý má pravý uhol pri vrchole X. Platí: a = 9 cm, x=4 cm, x =v-4 (v = výska trojuholníka ABC). Vypočítaj chýbajúce dĺžky strán obidvoch trojuholníkov.
- Súčet obsahov
Nád výškou rovnostranného trojuholníka ABC je zostrojený rovnostranný trojuholník A1, B1, C1, nad jeho výškou je zostrojený rovnostranný trojuholník A2, B2, C2, atd. Sa postup neustale opakuje. Aký je veľký súčet obsahov všetkých trojuholníkov, ak strana
- Lietadlo - zemná rýchlosť
Lietadlo letí na juh priemernou rychlostou 190km/h, od západu na východ fuka vietor rychlostou 20m/s . Ako rýchlo a akým smerom (vzhladom na poludník) sa bude lietadlo premiestnovať vzhľadom k zemi?
- Dve horárne
Dve horárne A, B sú oddelené lesom, obe sú viditeľné z horárne C, ktorá je s oboma spojená priamymi cestami. Akú bude mať dĺžku projektovaná cesta z A do B, ak je AC = 5004 m, BC = 2600 m a uhol ABC = 53° 45 '?
- Na vrchole
Na vrchole hory stojí hrad, ktorý má vežu vysokú 30m. Križovatku ciest v údolí vidíme z vrcholu veže a od jej päty v hlbkovych uhloch 32°50' a 30°10'. Ako vysoko je vrchol hory nad križovatkou?
- Prekážka
Určte vzdialenosť dvoch miest M, N, medzi ktorými je prekážka, takže miesto N z miesta M nie je viditeľné. Boli merané uhly MAN = 130°, NBM = 109° a vzdialenosti |AM| = 54, |BM| = 60, pričom body A, B, M ležia na jednej priamke.
Máš príklad, nad ktorým si premýšľaš aspoň 10 minút? Pošli nám príklad a my Ti ho skúsime vypočítať.