Z7–I–6, výstava koček
Na výstavě dlouhosrstých koček se sešlo celkem deset vystavujících. Vystavovalo se v obdélníkové místnosti, ve které byly dvě řady stolů jako na obrázku. Kočky byly označeny navzájem různými čísly v rozmezí 1 až 10 a na každém stole seděla jedna kočka. Určete, která kočka byla na výstavě hodnocena nejlépe, pokud víte, že:
a) součet čísel koček sedících naproti sobě byl vždy stejný,
b) součet čísel každých dvou koček sedících vedle sebe byl sudý,
c) součin čísel každých dvou koček sedících vedle sebe v dolní řadě je násobek čísla 8,
d) kočka číslo 1 není na kraji a je víc vpravo než kočka číslo 6,
e) vyhrála kočka sedící v pravém dolním rohu.
a) součet čísel koček sedících naproti sobě byl vždy stejný,
b) součet čísel každých dvou koček sedících vedle sebe byl sudý,
c) součin čísel každých dvou koček sedících vedle sebe v dolní řadě je násobek čísla 8,
d) kočka číslo 1 není na kraji a je víc vpravo než kočka číslo 6,
e) vyhrála kočka sedící v pravém dolním rohu.
Správná odpověď:

Zobrazuji 1 komentář:
Mo-radca
Nápověda. Může proti sobě, příp. vedle sebe sedět kočka se sudým a kočka s lichým
číslem?
Možné řešení. Postupně rozebereme důsledky jednotlivých poznatků ze zadání:
a) Čísla koček sedících proti sobě tvoří 5 párů se stejným součtem. Součet čísel všech koček je 1 + 2 + . . . + 10 = 55, takže každý pár musí mít součet 55 : 5 = 11; jediné možnosti jsou 1 + 10, 2 + 9, 3 + 8, 4 + 7, 5 + 6.
b) Sudé číslo nelze získat součtem sudého a lichého čísla. V jedné řadě proto mohou sedět pouze kočky s lichými čísly, ve druhé pouze kočky se sudými čísly.
c) Násobek čísla 8 nelze získat součinem lichých čísel. Odtud a z předchozího důsledku plyne, že v dolní řadě seděly pouze kočky se sudými čísly, tj. 2, 4, 6, 8, 10. Součinem dvou takových čísel lze získat násobek 8, právě když jeden ze součinitelů je 4 nebo 8. Proto nemohou být kočky s čísly 4 a 8 na krajích, ani uprostřed.
d) Podle důsledku a) víme, že proti kočce s číslem 1 seděla kočka s číslem 10. Odtud plyne, že také kočka s číslem 10 nemůže být na kraji a je víc vpravo než kočka s číslem 6.
e) Z dosavadních informací víme, že v pravém dolním rohu seděla kočka se sudým číslem různým od 4, 8, 10 a 6.
Vyhrála tedy kočka s číslem 2.
Poznámka. Z uvedeného téměř umíme určit rozmístění všech koček v místnosti: pořadí koček ve spodní řadě mohlo být
buď 6, 4, 10, 8, 2, nebo 6, 8, 10, 4, 2, pořadí koček v horní řadě je pak jednoznačně určeno podle důsledku a).
číslem?
Možné řešení. Postupně rozebereme důsledky jednotlivých poznatků ze zadání:
a) Čísla koček sedících proti sobě tvoří 5 párů se stejným součtem. Součet čísel všech koček je 1 + 2 + . . . + 10 = 55, takže každý pár musí mít součet 55 : 5 = 11; jediné možnosti jsou 1 + 10, 2 + 9, 3 + 8, 4 + 7, 5 + 6.
b) Sudé číslo nelze získat součtem sudého a lichého čísla. V jedné řadě proto mohou sedět pouze kočky s lichými čísly, ve druhé pouze kočky se sudými čísly.
c) Násobek čísla 8 nelze získat součinem lichých čísel. Odtud a z předchozího důsledku plyne, že v dolní řadě seděly pouze kočky se sudými čísly, tj. 2, 4, 6, 8, 10. Součinem dvou takových čísel lze získat násobek 8, právě když jeden ze součinitelů je 4 nebo 8. Proto nemohou být kočky s čísly 4 a 8 na krajích, ani uprostřed.
d) Podle důsledku a) víme, že proti kočce s číslem 1 seděla kočka s číslem 10. Odtud plyne, že také kočka s číslem 10 nemůže být na kraji a je víc vpravo než kočka s číslem 6.
e) Z dosavadních informací víme, že v pravém dolním rohu seděla kočka se sudým číslem různým od 4, 8, 10 a 6.
Vyhrála tedy kočka s číslem 2.
Poznámka. Z uvedeného téměř umíme určit rozmístění všech koček v místnosti: pořadí koček ve spodní řadě mohlo být
buď 6, 4, 10, 8, 2, nebo 6, 8, 10, 4, 2, pořadí koček v horní řadě je pak jednoznačně určeno podle důsledku a).
9 let 3 Likes
K vyřešení této úlohy jsou potřebné tyto znalosti z matematiky:
témaÚroveň náročnosti úkolu
Související a podobné příklady:
- V řadě
V řadě čtyř čísel je rozdíl každých dvou sousedních čísel roven třem. Součet těchto čísel je 60. Určete tato čísla.
- Největší číslo
Najděte největší číslo takové, že: 1.žádná číslice se v něm neopakuje, 2.součin každých dvou číslic je lichý, 3.součet všech číslic je sudý.
- Nezkrotného 7961
U nezkrotného divočáka měli před bitvou třicet stolů označených přirozenými čísly 2 až 31. Právě dva stoly patřily do salonku. Aby personál při inventuře zjistil, které dva to jsou, používal trik. Na dveřích salonku byla tabulka s číslem, které nebylo děl
- Mirek a Zuzka
Obdélník je rozdělený na 7 políček. Na každé políčko se má napsat právě jedno z čísel 1, 2 a 3. Mirek tvrdí, že to lze provést tak, aby součet dvou vedle sebe napsaných čísel byl pokaždé jiný. Zuzka naopak tvrdí, že to možné není. Rozhodněte, kdo z nich m
- Kamarádky 2571
Eva, Lucia, Barbora, Ivana a Slávka jsou dobré kamarádky, proto na hodině biologie chtějí vždy sedět u jednoho dlouhého stolu vedle sebe. Kolika způsoby se mohou posadit, pokud Slávka je levačka, a proto chce vždy sedět na levém kraji stolu?
- Třída
Kolika různými způsoby mohou sedět vedle sebe 6 chlapců a 5 dívek, pokud chtějí dívky sedět na kraji?
- Petra 3 MO 2022
Petra měla napsaná přirozená čísla od 1 do 9. Dvě z těchto čísel sečetla, smazala a výsledný součet napsala místo sčítanců. Měla tak napsáno osm čísel, která se jí podařilo rozdělit do dvou skupin se stejným součinem. Určete jaký největší mohl být tento s