MO Z6–I–1 - 2017 - Anička
Anička a Blanka si napsaly každá jedno dvojmístné číslo, které začínalo sedmičkou. Dívky si zvolily různá čísla. Poté každá mezi obě číslice vložila nulu, takže jim vzniklo trojmístné číslo. Od něj každá odečetla svoje původní dvojmístné číslo. Výsledek je překvapil. Určete, jak se jejich výsledky lišily.
Správná odpověď:

K vyřešení této úlohy jsou potřebné tyto znalosti z matematiky:
Téma:
Úroveň složitosti úkolu:
Související a podobné příklady:
- MO C - 2017
Najděte nejmenší čtyřmístné číslo abcd takové, že rozdíl (ab)2−(cd)2 je trojmístné číslo zapsané třemi stejnými číslicemi.
- Z5–I–6 MO 2017
Na stole leželo osm kartiček s čísly 2, 3, 5, 7, 11, 13, 17, 19. Ferda si vybral tři kartičky. Sečetl na nich napsaná čísla a zjistil, že jejich součet je o 1 větší než součet čísel na zbylých kartičkách. Které kartičky mohly zůstat na stole? Určete všech
- Z7–I–1 MO 2017
Petr řekl Pavlovi: „Napiš dvojmístné přirozené číslo, které má tu vlastnost, že když od něj odečteš dvojmístné přirozené číslo napsané obráceně, dostaneš rozdíl 63. Které číslo mohl Pavel napsat? Určete všechny možnosti.
- Z7–I–1 MO 2018
Na každé ze tří kartiček je napsána jedna číslice různá od nuly (na různých kartičkách nejsou nutně různé číslice). Víme, že jakékoli trojmístné číslo poskládané z těchto kartiček je dělitelné šesti. Navíc lze z těchto kartiček poskládat trojmístné číslo
- Z6–I–4 MO 2021/22
Kuba si zapsal čtyřmístné číslo, jehož 2 číslice byly sudé a dvě liché. Pokud by v tomto čísle vyškrtl obě sudé číslice, dostal by číslo čtyřikrát menší, než kdyby v tomtéž čísle vyškrtl obě liché číslice. Které největší číslo s těmito vlastnostmi si mohl
- MO 2019 Z9–I–5
Majka zkoumala vícemístná čísla, ve kterých se pravidelně střídají liché a sudé číslice. Ta, která začínají lichou číslicí, nazvala komická a ta, která začínají sudou číslicí, nazvala veselá. (Např. Číslo 32387 je komické, číslo 4529 je veselé. ) Majka vy
- MO Z8 – I – 4 2018
Na čtyřech kartičkách byly čtyři různé číslice, z nichž jedna byla nula. Vojta z kartiček složil co největší čtyřmístné číslo, Martin pak co nejmenší čtyřmístné číslo. Adam zapsal na tabuli rozdíl Vojtova a Martinova čísla. Potom Vojta z kartiček složil c
- Z7-I-4 MO 2017
Na stole leželo šest kartiček s ciframi 1, 2, 3, 4, 5, 6. Anežka z těchto kartiček složila šestimístné číslo, které bylo dělitelné šesti. Potom postupně odebírala kartičky zprava. Když odebrala první kartičku, zůstalo na stole pětimístné číslo dělitelné p
- MO C–I–1 2018
Neznámé číslo je dělitelné právě čtyřmi čísly z množiny {6, 15, 20, 21, 70}. Určete, kterými.
- Vierka 3 MO Z8
Vierka ze tří daných číslic sestavovala navzájem různá trojmístné čísla. Když všechna tato čísla sečetla, vyšlo jí 1221. Jaké číslice Vierka použila? Určete pět možností
- Z8–I–1 2017 Číslo milion
Vyjádřete číslo milion (1000000) pomocí čísel obsahujících pouze číslice 9 a algebraických operací plus, minus, krát, děleno, mocnina a odmocnina. Určete alespoň tři různá řešení.
- MO Z8–I–3 - 2017 - Adélka
Adélka měla na papíře napsána dvě čísla. Když k nim připsala ještě jejich největší společný dělitel a nejmenší společný násobek, dostala čtyři různá čísla menší než 100. S úžasem zjistila, že když vydělí největší z těchto čtyř čísel nejmenším, dostane nej
- Cifra
Jaké je poslední číslo 2016-té mocniny čísla 2017?
- MO Z7–I–3 2019
Roman má rád kouzla a matematiku. Naposled kouzlil s trojmístnými nebo čtyřmístnými čísly takto: • z daného čísla vytvořil dvě nová čísla tak, že ho rozdělil mezi číslicemi na místě stovek a desítek (např. Z čísla 581 by dostal 5 a 81), • nová čísla sečet
- Telefonní číslo
Ivanovo telefonní číslo končí takovým čtyřčíslí: Když od čtvrté číslice tohoto čtyřčíslí odečteme první, dostaneme stejné číslo, jako když od třetí číslice odečteme druhou. Když napíšeme čtyřčíslí odzadu a odečteme od něj to původní, dostaneme výsledek 54
- Najděte 8
Najděte tři číslice, které je potřeba vyškrtnout z čísla 214568793, aby vzniklo co nejmenší číslo. Čemu se rovná součet těchto vyškrtnutých číslic?
- Z7-1-3 MO 2018
Děda připravil pro svých šest vnoučat hromádku lískových oříšků s tím, ať si je nějak rozeberou. První přišel Adam, odpočítal si polovinu, přibral si ještě jeden oříšek a odešel. Stejně se zachoval druhý Bob, třetí Cyril, čtvrtý Dan i pátý Eda. Jen Franta