Jsou dány 2
Jsou dány vektory v=(2,7; -1,8), w=(-3;2,5). Určete souřadnice vektorů: a=v+w, b=v-w, c=w-v, d=2/3v
Správná odpověď:

Tipy na související online kalkulačky
Dva vektory určeny velikostmi a vzájemným úhlem sčítá naše kalkulačka sčítání vektorů .
K vyřešení této úlohy jsou potřebné tyto znalosti z matematiky:
Související a podobné příklady:
- Vektory
Pro vektor w platí: w = -3u+v. UrčPro vektor w platí: w = -3u+v. Určete souřadnice vektoru w, jestliže u=(-1, 4), v=(-1, -6)
- Kolmá a rovnoběžná
Potřebuji matematickou pomoc v tomto problému: jsou dány dva trojrozměrné vektory a = (- 5, 5 3) b = (- 2, -4, -5) Rozložte vektor b na b = v + w, kde v je rovnoběžná s a a w je kolmá na a. Najděte souřadnice vektorů v a w.
- Abs a vektory
Jsou dány vektory a=(4,2), b=(-2,1). Vypočítejte: a) |a+b|, b) |a|+|b|, c) |a-b|, d) |a|-|b|.
- Vektory - základní operace
Dáno jsou body A [-10; -10] B [-9; -3] C[13; -16] a D[-17; 7] a. Určitě souřadnice vektorů u = AB v = CD s = DB b. Vypočítejte vektorový součet u + v c. Vypočítejte rozdíl vektorů u-v d. Určitě souřadnice vektoru w = -8.u
- Vektory
Vektor a má souřadnice (8; 10) a vektor b má souřadnice (0; 17). Pokud vektor c = b - a, jaká je velikost vektoru c?
- Určete 19
Určete neznámou souřadnici vektoru tak, aby vektory byly kolineární: e=(7, -2), f = (-2, f2) c= ( -3/7, c2), d=(-4,0)
- Vektor
Určitě souřadnice vektoru u=CD, když C[9;16], D[-2,0].
- Je dán 15
Je dán koncový bod vektoru, který je umístěn v počátku kartézské soustavy Oxy. Určete souřadnice vektoru, jeho velikost a načrtněte jej: P[3,4] ; Q[-2,7] ; S[-5,-2] . .. tj. Vektory PO, QO, SO
- Trojúhelník 32183
V rovině je dán trojúhelník ABC. A(-3,5), B(2,3), C(-1,-2) zapište souřadnice vektorů u, v, w pokud u=AB, v=AC, w=BC. Zapište souřadnice středů úseček SAB(. .), SAC(. .. ), SBC(. .. )
- Souřadnice vektoru
Určete souřadnice vektoru u = CD, pokud C (19; -7) a D (-16; -5)
- Vektory
Urči velikost vektorů u= (2,4) a v= (-3,3)
- Vypočítejte: 8174
Polohový vektor hmotného bodu, který se pohybuje v rovině, lze v zavedené vztažné soustavě vyjádřit vztahem: r(t) = (1 + 5t + 2t² ; 3t + 1), kde t je čas v sekundách a souřadnice vektoru jsou v metrech. Vypočítejte: a) jaká je poloha hmotného bodu v době
- Vypočítejte: 8172
Polohový vektor hmotného bodu, který se pohybuje v rovině, lze v zavedené vztažné soustavě vyjádřit vztahem: r(t) = (6t2+ 4t ; 3t + 1) kde t je čas v sekundách a souřadnice vektoru jsou v metrech. Vypočítejte: a) jaká je poloha hmotného bodu v
- Těžnice
Trojúhelník ABC v rovině Oxy; jsou dány souřadnice bodů: A = 2,7 B = -4,3 C = 6, -1 Zkuste vypočítet všechny těžnice a všechny délky stran.
- Vypočítejte: 8173
Polohový vektor hmotného bodu, který se pohybuje v rovině, je možné v zavedené vztažné soustavě vyjádřit vztahem: r(t) = (2t + 3t2; 6t + 3), kde t je čas v sekundách a souřadnice vektoru jsou v metrech. Vypočítejte: a) jaká je poloha hmotného b
- Vektorovou 18193
Nechť v = (1, 2, 1), u = (0, -1, 3) a w = (1, 0, 7) . Vyřešte vektorovou rovnici c1 v + c2 u + c3 w = 0 pro proměnné c1, c2, c3 a rozhodněte, zda vektory v, u a w jsou lineárně závislé nebo nezávislé
- Čtverec 28
Čtverec ABCD má střed S[−3, −2] a vrchol A[1, −3]. Určete souřadnice ostatních vrcholů čtverce.