How large must the group of people be so that the probability that two people have a birthday on the same day of the year is greater than 90%?

Result

n =  41

#### Solution:

$p_{1}=\dfrac{ 1 }{ 365 } \doteq 0.0027 \ \\ \ \\ q_{2}=1-\dfrac{ 364 }{ 365 }=\dfrac{ 1 }{ 365 } \doteq 0.0027 \ \\ q_{3}=1-(1-q_{2}) \cdot \ \dfrac{ 363 }{ 365 }=1-(1-0.0027) \cdot \ \dfrac{ 363 }{ 365 } \doteq 0.0082 \ \\ q_{4}=1-(1-q_{3}) \cdot \ \dfrac{ 362 }{ 365 }=1-(1-0.0082) \cdot \ \dfrac{ 362 }{ 365 } \doteq 0.0164 \ \\ \ \\ q_{5}=1-(1-q_{4}) \cdot \ \dfrac{ 365-4 }{ 365 }=1-(1-0.0164) \cdot \ \dfrac{ 365-4 }{ 365 } \doteq 0.0271 \ \\ q_{6}=1-(1-q_{5}) \cdot \ \dfrac{ 365-5 }{ 365 }=1-(1-0.0271) \cdot \ \dfrac{ 365-5 }{ 365 } \doteq 0.0405 \ \\ q_{7}=1-(1-q_{6}) \cdot \ \dfrac{ 365-6 }{ 365 }=1-(1-0.0405) \cdot \ \dfrac{ 365-6 }{ 365 } \doteq 0.0562 \ \\ q_{8}=1-(1-q_{7}) \cdot \ \dfrac{ 365-7 }{ 365 }=1-(1-0.0562) \cdot \ \dfrac{ 365-7 }{ 365 } \doteq 0.0743 \ \\ q_{9}=1-(1-q_{8}) \cdot \ \dfrac{ 365-8 }{ 365 }=1-(1-0.0743) \cdot \ \dfrac{ 365-8 }{ 365 } \doteq 0.0946 \ \\ q_{10}=1-(1-q_{9}) \cdot \ \dfrac{ 365-9 }{ 365 }=1-(1-0.0946) \cdot \ \dfrac{ 365-9 }{ 365 } \doteq 0.1169 \ \\ q_{11}=1-(1-q_{10}) \cdot \ \dfrac{ 365-10 }{ 365 }=1-(1-0.1169) \cdot \ \dfrac{ 365-10 }{ 365 } \doteq 0.1411 \ \\ q_{12}=1-(1-q_{11}) \cdot \ \dfrac{ 365-11 }{ 365 }=1-(1-0.1411) \cdot \ \dfrac{ 365-11 }{ 365 } \doteq 0.167 \ \\ q_{13}=1-(1-q_{12}) \cdot \ \dfrac{ 365-12 }{ 365 }=1-(1-0.167) \cdot \ \dfrac{ 365-12 }{ 365 } \doteq 0.1944 \ \\ q_{14}=1-(1-q_{13}) \cdot \ \dfrac{ 365-13 }{ 365 }=1-(1-0.1944) \cdot \ \dfrac{ 365-13 }{ 365 } \doteq 0.2231 \ \\ q_{15}=1-(1-q_{14}) \cdot \ \dfrac{ 365-14 }{ 365 }=1-(1-0.2231) \cdot \ \dfrac{ 365-14 }{ 365 } \doteq 0.2529 \ \\ q_{16}=1-(1-q_{15}) \cdot \ \dfrac{ 365-15 }{ 365 }=1-(1-0.2529) \cdot \ \dfrac{ 365-15 }{ 365 } \doteq 0.2836 \ \\ q_{17}=1-(1-q_{16}) \cdot \ \dfrac{ 365-16 }{ 365 }=1-(1-0.2836) \cdot \ \dfrac{ 365-16 }{ 365 } \doteq 0.315 \ \\ q_{18}=1-(1-q_{17}) \cdot \ \dfrac{ 365-17 }{ 365 }=1-(1-0.315) \cdot \ \dfrac{ 365-17 }{ 365 } \doteq 0.3469 \ \\ q_{19}=1-(1-q_{18}) \cdot \ \dfrac{ 365-18 }{ 365 }=1-(1-0.3469) \cdot \ \dfrac{ 365-18 }{ 365 } \doteq 0.3791 \ \\ q_{20}=1-(1-q_{19}) \cdot \ \dfrac{ 365-19 }{ 365 }=1-(1-0.3791) \cdot \ \dfrac{ 365-19 }{ 365 } \doteq 0.4114 \ \\ q_{21}=1-(1-q_{20}) \cdot \ \dfrac{ 365-20 }{ 365 }=1-(1-0.4114) \cdot \ \dfrac{ 365-20 }{ 365 } \doteq 0.4437 \ \\ q_{22}=1-(1-q_{21}) \cdot \ \dfrac{ 365-21 }{ 365 }=1-(1-0.4437) \cdot \ \dfrac{ 365-21 }{ 365 } \doteq 0.4757 \ \\ q_{23}=1-(1-q_{22}) \cdot \ \dfrac{ 365-22 }{ 365 }=1-(1-0.4757) \cdot \ \dfrac{ 365-22 }{ 365 } \doteq 0.5073 \ \\ q_{24}=1-(1-q_{23}) \cdot \ \dfrac{ 365-23 }{ 365 }=1-(1-0.5073) \cdot \ \dfrac{ 365-23 }{ 365 } \doteq 0.5383 \ \\ q_{25}=1-(1-q_{24}) \cdot \ \dfrac{ 365-24 }{ 365 }=1-(1-0.5383) \cdot \ \dfrac{ 365-24 }{ 365 } \doteq 0.5687 \ \\ q_{26}=1-(1-q_{25}) \cdot \ \dfrac{ 365-25 }{ 365 }=1-(1-0.5687) \cdot \ \dfrac{ 365-25 }{ 365 } \doteq 0.5982 \ \\ q_{27}=1-(1-q_{26}) \cdot \ \dfrac{ 365-26 }{ 365 }=1-(1-0.5982) \cdot \ \dfrac{ 365-26 }{ 365 } \doteq 0.6269 \ \\ q_{28}=1-(1-q_{27}) \cdot \ \dfrac{ 365-27 }{ 365 }=1-(1-0.6269) \cdot \ \dfrac{ 365-27 }{ 365 } \doteq 0.6545 \ \\ q_{29}=1-(1-q_{28}) \cdot \ \dfrac{ 365-28 }{ 365 }=1-(1-0.6545) \cdot \ \dfrac{ 365-28 }{ 365 } \doteq 0.681 \ \\ q_{30}=1-(1-q_{29}) \cdot \ \dfrac{ 365-29 }{ 365 }=1-(1-0.681) \cdot \ \dfrac{ 365-29 }{ 365 } \doteq 0.7063 \ \\ q_{31}=1-(1-q_{30}) \cdot \ \dfrac{ 365-30 }{ 365 }=1-(1-0.7063) \cdot \ \dfrac{ 365-30 }{ 365 } \doteq 0.7305 \ \\ q_{32}=1-(1-q_{31}) \cdot \ \dfrac{ 365-31 }{ 365 }=1-(1-0.7305) \cdot \ \dfrac{ 365-31 }{ 365 } \doteq 0.7533 \ \\ q_{33}=1-(1-q_{32}) \cdot \ \dfrac{ 365-32 }{ 365 }=1-(1-0.7533) \cdot \ \dfrac{ 365-32 }{ 365 } \doteq 0.775 \ \\ q_{34}=1-(1-q_{33}) \cdot \ \dfrac{ 365-33 }{ 365 }=1-(1-0.775) \cdot \ \dfrac{ 365-33 }{ 365 } \doteq 0.7953 \ \\ q_{35}=1-(1-q_{34}) \cdot \ \dfrac{ 365-34 }{ 365 }=1-(1-0.7953) \cdot \ \dfrac{ 365-34 }{ 365 } \doteq 0.8144 \ \\ q_{36}=1-(1-q_{35}) \cdot \ \dfrac{ 365-35 }{ 365 }=1-(1-0.8144) \cdot \ \dfrac{ 365-35 }{ 365 } \doteq 0.8322 \ \\ q_{37}=1-(1-q_{36}) \cdot \ \dfrac{ 365-36 }{ 365 }=1-(1-0.8322) \cdot \ \dfrac{ 365-36 }{ 365 } \doteq 0.8487 \ \\ q_{38}=1-(1-q_{37}) \cdot \ \dfrac{ 365-37 }{ 365 }=1-(1-0.8487) \cdot \ \dfrac{ 365-37 }{ 365 } \doteq 0.8641 \ \\ q_{39}=1-(1-q_{38}) \cdot \ \dfrac{ 365-38 }{ 365 }=1-(1-0.8641) \cdot \ \dfrac{ 365-38 }{ 365 } \doteq 0.8782 \ \\ q_{40}=1-(1-q_{39}) \cdot \ \dfrac{ 365-39 }{ 365 }=1-(1-0.8782) \cdot \ \dfrac{ 365-39 }{ 365 } \doteq 0.8912 \ \\ q_{41}=1-(1-q_{40}) \cdot \ \dfrac{ 365-40 }{ 365 }=1-(1-0.8912) \cdot \ \dfrac{ 365-40 }{ 365 } \doteq 0.9032 \ \\ q_{42}=1-(1-q_{41}) \cdot \ \dfrac{ 365-41 }{ 365 }=1-(1-0.9032) \cdot \ \dfrac{ 365-41 }{ 365 } \doteq 0.914 \ \\ n=41$

Our examples were largely sent or created by pupils and students themselves. Therefore, we would be pleased if you could send us any errors you found, spelling mistakes, or rephasing the example. Thank you!

Leave us a comment of this math problem and its solution (i.e. if it is still somewhat unclear...):

Be the first to comment!

Tips to related online calculators
Do you want to convert time units like minutes to seconds?
Would you like to compute count of combinations?

## Next similar math problems:

1. Raffle
There are 200 draws in the raffle, but only 20 of them win. What is the probability of at least 4 winnings for a group of people who have bought 5 tickets together?
2. Two groups
The group of 10 girls should be divided into two groups with at least 4 girls in each group. How many ways can this be done?
3. Sum or product
What is the probability that two dice fall will have the sum 7 or product 12?
4. STRESSED word
Each letter in STRESSED is printed on identical cards, one letter per card and assembled in random order. Calculate the probability that the cards spell DESSERTS when assembled.
5. Boys and girls
There are eight boys and nine girls in the class. There were six children on the trip from this class. What is the probability that left a) only boys b) just two boys
6. Boys and girls
There are 11 boys and 18 girls in the classroom. Three pupils will answer. What is the probability that two boys will be among them?
7. Three reds
What is the probability that when choosing 3 carats from seven carats, all 3 reds will be red?
8. Cards
From a set of 32 cards we randomly pull out three cards. What is the probability that it will be seven king and ace?
9. Dices throws
What is the probability that the two throws of the dice: a) Six falls even once b) Six will fall at least once
10. Classroom
Of the 26 pupils in the classroom, 12 boys and 14 girls, four representatives are picked to the odds of being: a) all the girls b) three girls and one boy c) there will be at least two boys
11. Families 2
There are 729 families having 6 children each. The probability of a girl is 1/3 and the probability of a boy is 2/3. Find the the number of families having 2 girls and 4 boys.
12. Salami
How many ways can we choose 5 pcs of salami if we have 6 types of salami for 10 pieces and one type for 4 pieces?
13. Combinations of sweaters
I have 4 sweaters two are white, 1 red and 1 green. How many ways can this done?