Pythagorean theorem - math word problems - page 40 of 73
Number of problems found: 1442
- Bearing - navigation
A ship travels 84 km on a bearing of 17° and then travels on a bearing of 107° for 135 km. Find the distance of the end of the trip from the starting point to the nearest kilometer.
- Boat in the lake
A boatman walks along the ship's deck at a constant speed of 5 km/h in a direction that forms an angle of 60° with the direction of the ship's speed. The boat moves with respect to the lake's calm surface at a constant speed of 10 km/h. Determine graphica
- Northeasterly 9681
A military unit marches in a northerly direction from point A to point B, 15 km away. From place B, it goes 12 km in a northeasterly direction to place C. Determine the direct distance of cities A and C and certainly the deviation -alpha- by which the uni
- Intersection 6653
Two straight paths cross, making an angle alpha = 53 degrees 30'. There are two pillars on one of them, one at the intersection, the other at a distance of 500m from it. How far does one have to go from the intersection along the other road to see both po
- Motorcyclist and a car
The passenger car left at 7:00 and was heading east at a speed of 60 km/h. A motorcyclist left the same place and headed north at 40 km/h. What will be their air distance at ten o'clock?
- Distances
A boy is rowing a boat at a speed of 7.2 km/h. He directed the boat perpendicularly to the opposite bank, which is 600 m away. The river carries the boat at a speed of 4.0 km/h. What is the resulting speed of the boat relative to the bank? How far will th
- Journey
Charles and Eva stand in front of his house. Charles went to school south at a speed of 5.4 km/h, and Eva went to the store on a bicycle eastwards at 21.6 km/h. How far apart are they after 10 minutes?
- Paratrooper
After the parachute is opened, the paratrooper drops to the ground at a constant speed of 2 m/s, with the sidewinding at a steady speed of 1.5 m/s. Find: a) the magnitude of its resulting velocity concerning the ground, b) the distance of his land from a
- Suppose
Suppose you know that the length of a line segment is 15, x2=6, y2=14, and x1= -3. Find the possible value of y1. Is there more than one possible answer? Why or why not?
- Two-dimensional 36453
Two of its inhabitants stand at one point in the land of two-dimensional beings. Suddenly, they both start running at the same moment. Resident A runs north at 5m/s, and resident B runs east at 12m/s. Calculate how fast they are moving away from each othe
- Crossroads
A passenger car and an ambulance come to the rectangular crossroads, and the ambulance leaves. The passenger car is moving at 39 km/h, and the ambulance is moving at 41 km/h. Calculate the relative speed of the ambulance moving to the car.
- Reverse Pythagorean theorem
Given are the lengths of the sides of the triangles. Decide which one is rectangular: Δ ABC: 66 dm, 60 dm, 23 dm ... Δ DEF: 20 mm, 15 mm, 25 mm ... Δ GHI: 16 cm, 20 cm, 12 cm ... Δ JKL: 58 cm, 63 cm, 23 cm ... Δ MNO: 115 mm,
- Euclid theorems
Calculate the sides of a right triangle if leg a = 6 cm and a section of the hypotenuse, which is located adjacent to the second leg b, is 5cm.
- Equation of the circle
Find the equation of the circle inscribed in the rhombus ABCD where A[1, -2], B[8, -3], and C[9, 4].
- Perpendicular 7001
We throw a ball in an express car traveling at a constant speed of 24 m/s, whose initial speed relative to the vehicle is 7 m/s. What is the initial velocity of the ball relative to the surface of the ground if we throw it a) in the direction of travel b)
- An observer
An observer standing west of the tower sees its top at an altitude angle of 45 degrees. After moving 50 meters to the south, he sees its top at an altitude angle of 30 degrees. How tall is the tower?
- Rectangular trapezoid
The ABCD rectangular trapezoid with the AB and CD bases is divided by the diagonal AC into two equilateral rectangular triangles. The length of the diagonal AC is 62cm. Calculate the trapezium area in cm square and calculate how many different perimeters
- Points on circle
The Cartesian coordinate system with the origin O is a sketched circle k /center O; radius r=2 cm/. Write all the points that lie on a circle k and whose coordinates are integers. Write all the points on the circle I with center O and radius r=5 cm, whose
- Resultant force
Calculate mathematically and graphically the resultant of three forces with a common center if: F1 = 50 kN α1 = 30° F2 = 40 kN α2 = 45° F3 = 40 kN α3 = 25°
- Forces
Forces with magnitudes F1 = 42N and F2 = 35N act at a common point and make an angle of 77°12'. How big is their resultant?
Do you have homework that you need help solving? Ask a question, and we will try to solve it. Solving math problems.
The Pythagorean theorem is the base for the right triangle calculator.