Pythagorean theorem - math word problems - page 48 of 73
Number of problems found: 1442
- Equation of the circle
Find an equation of the circle whose diameter has endpoints (1,-4) and (3,2).
- Equation of a circle
Write the general equation of a circle with center S(2;5) and point B(5;6) lying on this circle.
- Vector 7
Given vector OA(12,16) and vector OB(4,1). Find vector AB and vector |A|.
- Equilateral cone
We pour so much water into a container with the shape of an equilateral cone, the base of which has a radius r = 6 cm, that one-third of the volume of the cone is filled. How high will the water reach if we turn the cone upside down?
- Pentagonal pyramid
Find the volume and surface of a regular pentagonal pyramid with a base edge a = 12.8 cm and a height v = 32.1 cm.
- Top of the tower
The top of the tower has the shape of a regular hexagonal pyramid. The base edge has a length of 1.2 m. The pyramid height is 1.6 m. How many square meters of sheet metal are needed to cover the top of the tower if 15% extra sheet metal is needed for join
- Pit
The pit is 1.2 m deep and in the shape of a truncated pyramid with a rectangular base. Its length and width are the top 3 × 1.5 m and the bottom 1 m × 0.5 m. To paint one square meter of the pit, we use 0.8 l of green paint. How many liters of paint are n
- Spherical cap
What is the surface area of a spherical cap, the base diameter 27 m, and height 2 m?
- A cylinder
A cylinder 108 cm high has a circumference of 24 cm. A string makes exactly six complete turns around the cylinder while its two ends touch the top and bottom. (forming a spiral around the cylinder). How long is the string in cm?
- Billiard balls
A layer of ivory billiard balls radius of 6.35 cm is in the form of a square. The balls are arranged so that each ball is tangent to everyone adjacent to it. In the spaces between sets of 4 adjacent balls, other balls rest, equal in size to the original.
- The base 2
The base diameter of a right cone is 16cm, and its slant height is 12cm. A. ) Find the perpendicular height of the cone to 1 decimal place. B. ) Find the volume of the cone, and convert it to 3 significant figures. Take pi =3.14
- Traffic cones
Forty identical traffic cones with a base diameter d = 3 dm and height v = 6 dm will be painted orange outside (without the base). If we need 50 cm³ of paint to cover 1 m² and 1 liter of paint costs 80 SKK, how many SKK crowns will we pay?
- Container NDR
A cone-shaped container with a bottom diameter of 60 cm and a side length of 0.5 m is filled with water. We pour the water into a container with the face of a cylinder with a radius of 3dm and a height of 20cm. Will the cylinder overflow or not be complet
- MO SK/CZ Z9–I–3
John had the ball that rolled into the pool and swam in the water. Its highest point was 2 cm above the surface. The circle's diameter that marked the water level on the ball's surface was 8 cm. Find the diameter of John's ball.
- Quadrilateral oblique prism
What is the volume of a quadrilateral oblique prism with base edges of length a = 1m, b = 1.1m, c = 1.2m, d = 0.7m if a side edge of length h = 3.9m has a deviation from the base of 20° 35' and the edges a, b form an angle of 50.5°?
- Iglu - cone tent
The cone-shaped tent is 3 m high, and the diameter of its base is 3.2 m. a) The tent is made of two layers of material. How many m² of fabric is needed for production (including flooring) if 20% needs to be added to the minimum amount due to cutting waste
- Tank 28
The tank is shaped like a cuboid. The bottom is rectangular, one side of the rectangle is 40cm long, and the diagonal of this rectangle is 50cm. The height of the tank is 1.5m. We start filling the tank with water at a rate of 1 liter per second. No water
- Church roof 2
The roof has the shape of a rotating cone shell with a base diameter of 6 m and a height of 2.5 m. How much money (CZK) will cost the roof cover sheet if 1 m² of metal sheet costs 152 CZK and if you need 15% extra for joints, overlays, and waste?
- Cubes
One cube is an inscribed sphere, and the other one is described. Calculate the difference of volumes of cubes if the difference of surfaces in 231 cm².
- Hexagon rotation
A regular hexagon of side 6 cm is rotated at 60° along a line passing through its longest diagonal. What is the volume of the figure thus generated?
Do you have homework that you need help solving? Ask a question, and we will try to solve it. Solving math problems.
The Pythagorean theorem is the base for the right triangle calculator.