Trojúhelník 15 14 16




Ostroúhlý různostranný trojúhelník.

Strany: a = 15   b = 14   c = 16

Obsah trojúhelníku: S = 96,55879489219
Obvod trojúhelníku: o = 45
Semiperimeter (poloobvod): s = 22,5

Úhel ∠ A = α = 59,55659700416° = 59°33'21″ = 1,03994477664 rad
Úhel ∠ B = β = 53,57664263577° = 53°34'35″ = 0,93550850414 rad
Úhel ∠ C = γ = 66,86876036007° = 66°52'3″ = 1,16770598458 rad

Výška trojúhelníku: va = 12,87443931896
Výška trojúhelníku: vb = 13,79439927031
Výška trojúhelníku: vc = 12,07697436152

Těžnice: ta = 13,02988142208
Těžnice: tb = 13,83883525031
Těžnice: tc = 12,10437184369

Poloměr vepsané kružnice: r = 4,29114643965
Poloměr opsané kružnice: R = 8,69994391387

Souřadnice vrcholů: A[16; 0] B[0; 0] C[8,906625; 12,07697436152]
Těžiště: T[8,30220833333; 4,02332478717]
Souřadnice středu kružnice opsané: U[8; 3,41876368045]
Souřadnice středu vepsané kružnice: I[8,5; 4,29114643965]

Vnější úhly trojúhelníku:
∠ A' = α' = 120,44440299584° = 120°26'39″ = 1,03994477664 rad
∠ B' = β' = 126,42435736423° = 126°25'25″ = 0,93550850414 rad
∠ C' = γ' = 113,13223963993° = 113°7'57″ = 1,16770598458 rad

Vypočítat další trojúhelník




Jak jsme vypočítali tento trojúhelník?

1. Obvod trojúhelníku je součtem délek jeho tří stran

2. Poloviční obvod trojúhelníku

Poloviční obvod trojúhelníku (semiperimeter) je polovina z jeho obvodu. Poloviční obvod trojúhelníku se ve vzorcích pro trojúhelníky často vyskytuje tak, že mu byl přidělen samostatný název (semiperimeter - poloobvod - s). Trojúhelníková nerovnost říká, že nejdelší délka strany trojúhelníku musí být menší než semiperimeter.

s=2o=245=22,5

3. Obsah trojúhelníku pomocí Heronova vzorce

Heronův vzorec dává obsah trojúhelníku, kdy jsou známé délky všech tří stran. Není třeba nejprve vypočítat úhly nebo jiné vzdálenosti v trojúhelníku. Heronův vzorec funguje stejně dobře ve všech případech a druzích trojúhelníků.

4. Výpočet výšek trojúhelníku z jeho obsahu.

Existuje mnoho způsobů, jak zjistit výšku trojúhelníku. Nejjednodušší způsob je ze vzorce, když známe obsah a délku základny. Plocha trojúhelníku je polovinou součinu délky základny a výšky. Každá strana trojúhelníku může být základnou; existují tedy tři základny a tři výšky. Výška trojúhelníku je kolmá úsečka od vrcholu po přímku obsahující základnu.

5. Výpočet vnitřních úhlů trojúhelníku pomocí kosinové věty

Kosinová věta je užitečná při hledání úhlů trojúhelníku, když známe všechny tři strany. Kosinová věta spojuje všechny tři strany trojúhelníku s úhlem trojúhelníku. Kosinová věta je extrapolací Pythagorovy věty pro jakýkoliv trojúhelník. Pythagorova věta funguje pouze v pravoúhlém trojúhelníku. Pythagorova věta je zvláštním případem kosinové věty a dá se z něj odvodit, protože kosinus 90 ° je 0. Nejlepší je nejprve najít úhel oproti nejdelší straně. V případě kosinové věty neexistuje problém s tupými úhly jako v případě sinusové věty, protože funkce kosinus je záporná pro tupé úhly, nulová pro pravé a kladná pro ostré úhly. K určení úhlu z hodnoty kosinus používáme inverzní kosinus nazývaný arkuskosinus.

6. Poloměr vepsané kružnice

Vepsaná kružnice v trojúhelníku je kružnice (kruh), který se dotýká každé jeho strany. Všechny trojúhelníky mají vepsanou kružnici a její střed vždy leží uvnitř trojúhelníku. Střed vepsané kružnice je průsečík tří os vnitřních úhlů (průsečík bisektorov). Součin poloměru vepsané kružnice a semiperimetru (poloviny obvodu) trojúhelníku je jeho plocha.

7. Poloměr opsané kružnice

Opsaná kružnice trojúhelníku je kružnice, která prochází všemi vrcholy trojúhelníku. Střed opsané kružnice je bod, ve kterém se protínají osy stran trojúhelníku.

8. Výpočet těžnic

Těžnice (medián) trojúhelníku je úsečka spojující vrchol se středem protější strany. Každý trojúhelník má tři těžnice a všechny se vzájemně protínají v těžišti trojúhelníku. Těžiště rozděluje těžnice na části v poměru 2: 1, přičemž těžiště je dvakrát blíže ke středu strany jako protilehlý vrchol. Apolloniusovu větu používáme pro výpočet délky těžnic z délek jeho stran.


Vypočítat další trojúhelník