Výpočet trojúhelníku SUS - výsledek

Prosím zadejte dvě strany trojúhelníku a úhel jimi sevřený
°


Tupouhlý rovnoramenný trojúhelník.

Strany: a = 88   b = 88   c = 175.3330266864

Obsah trojúhelníku: S = 672.3665743926
Obvod trojúhelníku: o = 351.3330266864
Semiperimeter (poloobvod): s = 175.6655133432

Úhel ∠ A = α = 5° = 0.08772664626 rad
Úhel ∠ B = β = 5° = 0.08772664626 rad
Úhel ∠ C = γ = 170° = 2.96770597284 rad

Výška trojúhelníku: va = 15.28110396347
Výška trojúhelníku: vb = 15.28110396347
Výška trojúhelníku: vc = 7.67697053618

Těžnice: ta = 131.5543605953
Těžnice: tb = 131.5543605953
Těžnice: tc = 7.67697053618

Poloměr vepsané kružnice: r = 3.82875423858
Poloměr opsané kružnice: R = 504.8433382809

Souřadnice vrcholů: A[175.3330266864; 0] B[0; 0] C[87.66551334321; 7.67697053618]
Těžiště: T[87.66551334321; 2.55765684539]
Souřadnice středu kružnice opsané: U[87.66551334321; -497.1743677448]
Souřadnice středu vepsané kružnice: I[87.66551334321; 3.82875423858]

Vnější úhly trojúhelníku:
∠ A' = α' = 175° = 0.08772664626 rad
∠ B' = β' = 175° = 0.08772664626 rad
∠ C' = γ' = 10° = 2.96770597284 rad

Vypočítat další trojúhelník




Jak jsme vypočítali tento trojúhelník?

Výpočet trojúhelníku probíhá ve dvou fázích. První fáze je taková, že ze vstupních parametrů se snažíme vypočítat všechny tři strany trojúhelníku. První fáze probíhá různě pro různé zadané trojúhelníky. Druhá fáze je vlastně výpočet ostatních charakteristik trojúhelníku (z již vypočtených stran, proto SSS), jako jsou úhly, plocha, obvod, výšky, těžnice, poloměry kružnic atd. Některé vstupní vstupní údaje vedou i ke dvěm až třem správným řešením trojúhelníku (např. pokud je zadaný obsah trojúhelníku a dvě strany - výsledkem je typicky ostroúhlý a tupoúhlý trojúhelník).

1. Výpočet třetí strany c trojúhelníku pomocí kosinové věty

a = 88; b = 88; gamma = 170°; ; ; c**2 = a**2+b**2 - 2ab cos gamma; c = sqrt{ a**2+b**2 - 2ab cos gamma }; c = sqrt{ 88**2+88**2 - 2 * 88 * 88 * cos 170° }; c = 175.33
Nyní, když víme délky všech tří stran trojúhelníku, trojúhelník je jednoznačně určen. Dále proto výpočet je stejný a dopočítají se další jeho vlastnosti - výpočet trojúhelníku ze známých tří stran SSS.

a = 88; b = 88; c = 175.33

2. Obvod trojúhelníku je součtem délek jeho tří stran

o = a+b+c = 88+88+175.33 = 351.33

3. Poloviční obvod trojúhelníku

Poloviční obvod trojúhelníku (semiperimeter) je polovina z jeho obvodu. Poloviční obvod trojúhelníku se ve vzorcích pro trojúhelníky často vyskytuje tak, že mu byl přidělen samostatný název (semiperimeter - poloobvod - s). Trojúhelníková nerovnost říká, že nejdelší délka strany trojúhelníku musí být menší než semiperimeter.

s = fraction{ o }{ 2 } = fraction{ 351.33 }{ 2 } = 175.67

4. Obsah trojúhelníku pomocí Heronova vzorce

Heronův vzorec dává obsah trojúhelníku, kdy jsou známé délky všech tří stran. Není třeba nejprve vypočítat úhly nebo jiné vzdálenosti v trojúhelníku. Heronův vzorec funguje stejně dobře ve všech případech a druzích trojúhelníků.

S = sqrt{ s(s-a)(s-b)(s-c) }; S = sqrt{ 175.67 * (175.67-88)(175.67-88)(175.67-175.33) }; S = sqrt{ 452075.69 } = 672.37

5. Výpočet výšek trojúhelníku z jeho obsahu.

Existuje mnoho způsobů, jak zjistit výšku trojúhelníku. Nejjednodušší způsob je ze vzorce, když známe obsah a délku základny. Plocha trojúhelníku je polovinou součinu délky základny a výšky. Každá strana trojúhelníku může být základnou; existují tedy tři základny a tři výšky. Výška trojúhelníku je kolmá úsečka od vrcholu po přímku obsahující základnu.

S = fraction{ a v_a }{ 2 }; ; ; v_a = fraction{ 2 S }{ a } = fraction{ 2 * 672.37 }{ 88 } = 15.28; v_b = fraction{ 2 S }{ b } = fraction{ 2 * 672.37 }{ 88 } = 15.28; v_c = fraction{ 2 S }{ c } = fraction{ 2 * 672.37 }{ 175.33 } = 7.67

6. Výpočet vnitřních úhlů trojúhelníku pomocí kosinové věty

Kosinová věta je užitečná při hledání úhlů trojúhelníku, když známe všechny tři strany. Kosinová věta spojuje všechny tři strany trojúhelníku s úhlem trojúhelníku. Kosinová věta je extrapolací Pythagorovy věty pro jakýkoliv trojúhelník. Pythagorova věta funguje pouze v pravoúhlém trojúhelníku. Pythagorova věta je zvláštním případem kosinové věty a dá se z něj odvodit, protože kosinus 90 ° je 0. Nejlepší je nejprve najít úhel oproti nejdelší straně. V případě kosinové věty neexistuje problém s tupými úhly jako v případě sinusové věty, protože funkce kosinus je záporná pro tupé úhly, nulová pro pravé a kladná pro ostré úhly. K určení úhlu z hodnoty kosinus používáme inverzní kosinus nazývaný arkuskosinus.

a**2 = b**2+c**2 - 2bc cos alpha; ; ; alpha = arccos( fraction{ b**2+c**2-a**2 }{ 2bc } ) = arccos( fraction{ 88**2+175.33**2-88**2 }{ 2 * 88 * 175.33 } ) = 5°; ; ; b**2 = a**2+c**2 - 2ac cos beta; beta = arccos( fraction{ a**2+c**2-b**2 }{ 2ac } ) = arccos( fraction{ 88**2+175.33**2-88**2 }{ 2 * 88 * 175.33 } ) = 5°
 gamma = 180° - alpha - beta = 180° - 5° - 5° = 170°

7. Poloměr vepsané kružnice

Vepsaná kružnice v trojúhelníku je kružnice (kruh), který se dotýká každé jeho strany. Všechny trojúhelníky mají vepsanou kružnici a její střed vždy leží uvnitř trojúhelníku. Střed vepsané kružnice je průsečík tří os vnitřních úhlů (průsečík bisektorov). Součin poloměru vepsané kružnice a semiperimetru (poloviny obvodu) trojúhelníku je jeho plocha.

S = rs; r = fraction{ S }{ s } = fraction{ 672.37 }{ 175.67 } = 3.83

8. Poloměr opsané kružnice

Opsaná kružnice trojúhelníku je kružnice, která prochází všemi vrcholy trojúhelníku. Střed opsané kružnice je bod, ve kterém se protínají osy stran trojúhelníku.

R = fraction{ a b c }{ 4 r s } = fraction{ 88 * 88 * 175.33 }{ 4 * 3.828 * 175.665 } = 504.84

9. Výpočet těžnic

Těžnice (medián) trojúhelníku je úsečka spojující vrchol se středem protější strany. Každý trojúhelník má tři těžnice a všechny se vzájemně protínají v těžišti trojúhelníku. Těžiště rozděluje těžnice na části v poměru 2: 1, přičemž těžiště je dvakrát blíže ke středu strany jako protilehlý vrchol. Apolloniusovu větu používáme pro výpočet délky těžnic z délek jeho stran.

t_a = fraction{ sqrt{ 2 b**2+2c**2 - a**2 } }{ 2 } = fraction{ sqrt{ 2 * 88**2+2 * 175.33**2 - 88**2 } }{ 2 } = 131.554; t_b = fraction{ sqrt{ 2 c**2+2a**2 - b**2 } }{ 2 } = fraction{ sqrt{ 2 * 175.33**2+2 * 88**2 - 88**2 } }{ 2 } = 131.554; t_c = fraction{ sqrt{ 2 b**2+2a**2 - c**2 } }{ 2 } = fraction{ sqrt{ 2 * 88**2+2 * 88**2 - 175.33**2 } }{ 2 } = 7.67
Vypočítat další trojúhelník