Z8–I–1 2017 Číslo milion

Vyjádřete číslo milion (1000000) pomocí čísel obsahujících pouze číslice 9 a algebraických operací plus, minus, krát, děleno, mocnina a odmocnina. Určete alespoň tři různá řešení.

Správný výsledek:

a =  1000000
b =  1000000
c =  1000000

Řešení:

a=999999+9/9=1000000=1.000000106
b=99999 (9+9/9)+99/99/9=1000000=1.000000106
c=(9+9/9)(9+9+9+9+9+9)/9=1000000=1.000000106



Budeme velmi rádi, pokud najdete chybu v příkladu, pravopisné chyby nebo nepřesnost a ji nám prosím pošlete . Děkujeme!






Zobrazuji 9 komentářů:
#
Žák
Díky moc :)

2 roky  1 Like
#
Zak
Nepřijdou na to učitele ?

#
Dr Math
myslime jsi ze odbouravame stres u zaku... nekteri i po shlednuti vysledku a mozneho reseni prikladu MO nevi, nechapou.... Sami se rozhodnou ci se resenim inspirujou nebo to zabalej.

Nekterym zakum chybi pouze natuknuti.....

#
žák
Díky moc ! Určitě to není nic těžkého, ale zabírá to čas který né všichni mají. Ještě jedno děkuji za pomoc.

2 roky  1 Like
#
Žák
Moc děkuju! Tohle mi fakt pomohlo.

2 roky  1 Like
#
Alice
Prosím vysvetlite mi ten 3 výsledek jaké znaménko je tam kde začínají ty malé devitky? Děkuji předem

2 roky  1 Like
#
Žák
Co je to \

#
Žanonymák
Ta 3 nevychází

#
Žák
Můj kamarád to takhle udělal, a u 2. řešení mu řekli že se v tomto příkladě nesmí používat více devítek u sebe, pouze samostatně. Jste si svým výsledkem jistí na 100 procent?

avatar









K vyřešení této úlohy jsou potřebné tyto znalosti z matematiky:

Další podobné příklady a úkoly:

  • Z6 – I – 6 MO 2019
    numbers_1 Majka zkoumala vícemístná čísla, ve kterých se pravidelně střídají liché a sudé číslice. Ta, která začínají lichou číslicí, nazvala komická a ta, která začínají sudou číslicí, nazvala veselá. (Např. Číslo 32387 je komické, číslo 4529 je veselé. ) Mezi tro
  • Z6–I–5 MO 2018
    olympics_9 V následujícím příkladě na sčítání představují stejná písmena stejné číslice, různá písmena různé číslice. RATAM RAD -------------- ULOHY
  • MO Z7–I–3 2019
    olympics Roman má rád kouzla a matematiku. Naposled kouzlil s trojmístnými nebo čtyřmístnými čísly takto: • z daného čísla vytvořil dvě nová čísla tak, že ho rozdělil mezi číslicemi na místě stovek a desítek (např. Z čísla 581 by dostal 5 a 81), • nová čísla sečet
  • Z7–I–1 MO 2018
    numbers2_49 Na každé ze tří kartiček je napsána jedna číslice různá od nuly (na různých kartičkách nejsou nutně různé číslice). Víme, že jakékoli trojmístné číslo poskládané z těchto kartiček je dělitelné šesti. Navíc lze z těchto kartiček poskládat trojmístné číslo
  • Osmistěn
    8sten Na každé stěně pravidelného osmistěnu je napsáno jedno z čísel 1, 2, 3, 4, 5, 6, 7 a 8, přičemž na různých stěnách jsou různá čísla. U každé stěny Jarda určil součet čísla na ní napsaného s čísly tří sousedních stěn. Takto dostal osm součtů, které také se
  • Z8-I-6 MO 2017
    axes_2 Přímka představuje číselnou osu a vyznačené body odpovídají číslům a, - a, a + 1, avšak v neurčeném pořadí. Sestrojte body, které odpovídají číslům 0 a 1. Proberte všechny možnosti.
  • MO Z8–I–3 - 2017 - Adélka
    numbers2_32 Adélka měla na papíře napsána dvě čísla. Když k nim připsala ještě jejich největší společný dělitel a nejmenší společný násobek, dostala čtyři různá čísla menší než 100. S úžasem zjistila, že když vydělí největší z těchto čtyř čísel nejmenším, dostane nej
  • Z9–I–1
    ctverec_mo Ve všech devíti polích obrazce mají být vyplněna přirozená čísla tak, aby platilo: • každé z čísel 2, 4, 6 a 8 je použito alespoň jednou, • čtyři z polí vnitřního čtverce obsahují součiny čísel ze sousedících polí vnějšího čtverce, • v kruhu je součet čís
  • Z9 – I – 5 MO 2018
    kruhy_mo Adam a Eva vytvářeli dekorace z navzájem shodných bílých kruhů. Adam použil čtyři kruhy, které sestavil tak, že se každý dotýkal dvou jiných kruhů. Mezi ně pak vložil jiný kruh, který se dotýkal všech čtyř bílých kruhů, a ten vybarvil červeně. Eva použila
  • Z8-I-2 MO 2018
    fr_2 Do třídy přibyl nový žák, o kterém se vědělo, že kromě angličtiny umí výborně ještě jeden cizí jazyk. Tři spolužáci se dohadovali, který jazyk to je. První soudil: „Francouzština to není. " Druhý hádal: „Je to španělština nebo němčina. " Třetí usuzoval: „
  • Z9-I-6 MO 2017
    olympics_1 Na přímce představující číselnou osu uvažte navzájem různé body odpovídající číslům a, 2a, 3a+1 ve všech možných pořadích. U každé možnosti rozhodněte, zda je takové uspořádání možné. Pokud ano, uveďte konkrétní příklad, pokud ne, zdůvodněte proč.
  • Dělitelnost
    divisibility Je číslo 237610 dělitelné číslem 5?
  • MO 2019 Z9–I–5
    olympics Majka zkoumala vícemístná čísla, ve kterých se pravidelně střídají liché a sudé číslice. Ta, která začínají lichou číslicí, nazvala komická a ta, která začínají sudou číslicí, nazvala veselá. (Např. Číslo 32387 je komické, číslo 4529 je veselé. ) Majka vy
  • Autobus
    havo V autobuse bylo 102 lidí. 28 dívek mělo dva psy. A 11 dívek mělo jednoho psa. Na další zastávce vystoupilo 5 psů (i s páníčky). Nastoupili dva chlapci dohromady se třemi psy. Autobus řídil šofér. Kolik bylo v autobusě nohou?
  • MO Z6–I–3 2018
    moz6 Na obrazku jsou naznačeny dvě řady šestiúhelníkových pole které doprava pokračují bez omezení do každého pole doplňte jedno kladné celé číslo tak aby součet čísel v libovolných třech navzájem sousedících polích byl 2018. Určete číslo které bude 2019 políč
  • Z9 – I – 2 MO 2018
    equliateral V rovnostranném trojúhelníku ABC je K středem strany AB, bod L leží v třetině strany BC blíže bodu C a bod M leží v třetině strany AC blíže bodu A. Určete, jakou část obsahu trojúhelníku ABC zabírá trojúhelník KLM.
  • MO C-I-3 2019
    numbers Určete všechny dvojice přirozených čísel A a B, pro které platí, že součet dvojnásobku nejmenšího společného násobku a trojnásobku největšího společného dělitele přirozených čísel A a B je roven jejich součinu.