Příklady na trojúhelník - strana 32 z 124
Počet nalezených příkladů: 2477
- Trojúhelníku 27683
Pravoúhlý trojúhelník XYZ je podobný trojúhelníku ABC, který má pravý úhel u vrcholu X. Platí: a = 9 cm, x=4 cm, x =v-4 (v = výška trojúhelníku ABC). Vypočítej chybějící délky stran obou trojúhelníků. - Trojúhelníku 7216
Pravý rovnoramenný trojúhelník má výšku x nakreslenou z pravého úhlu k přeponě, která jej rozděluje na dva nestejné segmenty. Délka jednoho segmentu je 5 cm. Jaká je plocha trojúhelníku? Děkuji. - Vzdušnou 5712
Adam a Boris jdou ze školy po dvou navzájem kolmých cestách. Adamova průměrná rychlost je 6 km/h, Borisova 8 km/h. Jak daleko budou od sebe vzdušnou čarou po 0,5 hodin? - Rovnoramenný trojuhelník
Rovnoramenný trojuhelník o základně c a ramenech a je dáno : a = 50,3 cm c = 48,2 cm Určete vnitřní uhly a výšku na základnu c. - Sloup elektrického vedení
Z místa A je vidět sloup elektrického vedení pod úhlem 18 stupnů. Z místa B, do kterého se dostaneme, jedeme-li z Místa A 30m směrem od sloupu pod úhlem 10 stupnů. Urči výšku sloupu elektrického vedení. - Rovnoramenný 7217
Pravý rovnoramenný trojúhelník má výšku x nakreslenou z pravého úhlu k přeponě, která jej rozděluje na dva stejné segmenty (útvary). Délka jednoho segmentu je 5 cm. Jaká je plocha trojúhelníku? - Žebřík - úhel
Žebřík dlouhý 6,5 m je opřen o svislou stěnu. Jeho spodní konec se opírá o zem ve vzdálenosti 1,6 m od zdi. Určete, do jaké výšky dosahuje horní konec žebříku a pod jakým úhlem je žebřík opřen o zeď. - Je dán 15
Je dán koncový bod vektoru, který je umístěn v počátku kartézské soustavy Oxy. Určete souřadnice vektoru, jeho velikost a načrtněte jej: P[3,4] ; Q[-2,7] ; S[-5,-2] . .. tj. Vektory PO, QO, SO - Z letadla
Z letadla které letí ve výšce 500m, pozorovali ve směru letu místa A a B (nacházející se ve stejné nadmořské výšce) pod hloubkovými úhly alfa = 48° a beta = 35°. Jak daleko jsou od sebe místa A a B? - Strany 10
V trojúhelníku je dána délka strany AB = 6 cm, výška na stranu c = 5 cm, úhel BCA = 35°. Vypočítejte strany a, b. - Vlak jede
Vlak jede rychlostí 14m/s a dešťové kapky kreslí na oknech čáry, které svírají s vodorovným směrem úhel 60 stupňů. Jakou rychlosti kapky dopadají? - Vypočítejte
Vypočítejte objem a povrch kužele, jehož osový řez je rovnostranný trojúhelník s délkou strany a = 18cm. - Hranol 8
Urč objem a povrch hranolu s podstavou rovnostranného trojúhelníku pokud strana a je 7 dm a výška tělesa 1,5 m - Z okna 2
Z okna ležícího 8 m nad horizontální rovinou vidíme vrchol věže ve výškovém úhlu 53 stupňů 20 minut, její patu v hloubkovém úhlu 14 stupňů 15 minut. Jak vysoká je věž? - Raketa
Vystřelí se raketa rychlostí 100 fps ve směru 30° nad vodorovnou rovinu. Určete maximální výšku, do které stoupá? Fps je jednotka stopa za sekundu. - Náměstí 3
Vypočtěte rozlohu náměstí tvaru rovnoramenneho trojúhelníku s rameny 50m a základnou 60m. Kolik dlaždic se spotřebuje na vydlazdeni náměstí, jestliže plocha jedné dlaždice je 25 dm²? - Paraboly 82478
Určete rovnici paraboly, která má bod F = [3,2] za své ohniště a přímku x+y+1=0 za svou řadící přímku. - Balonek
Nikolka má z poutě balonek na dva metry dlouhém provázku, jehož konec drží 60 cm nad zemí. Balonek se vznáší šikmo od Nikolky a je od ní vodorovně vzdálen 145 cm. V jaké výši je balonek od země? - Sklon bazénu
Vypočítejte sklon v procentech i ve stupních dna bazénu dlouhého 10 m, pokud hloubka vody na začátku bazénu je 1,16 m (pro děti) a na konci bazénu je 1,77 m (pro plavce). - Horní a Dolní Ves
Vzdálenost vzdušnou čarou mezi Dolní a Horní Vsí je 3 km a rovnoměrné stoupání je 5%. Jaký je výškový rozdíl mezi Horní a Dolní Vsí zaokrouhlený na celé metry?
Máš úkol, který jsi tady nenašel vyřešen? Pošli nám úkol a my Ti ji zkusíme vypočítat. Řešení příkladů z matematiky.
