Sphere and cone

Within the sphere of radius G = 33 cm inscribe the cone with the largest volume. What is that volume, and what are the dimensions of the cone?

Correct answer:

r =  31.11 cm
h =  44 cm
V =  44602.24 cm3

Step-by-step explanation:

G=33 cm V=31πr2h h=G+x=33+x G2=x2+r2 r2=G2x2 V=31π(G2x2)(G+x) V=31π(G3+G2xGx2x3)  V=31π(G22Gx3x2) V=0 G22Gx3x2=0 3x266x+1089=0 3x2+66x1089=0  a=3;b=66;c=1089 D=b24ac=66243(1089)=17424 D>0  x1,2=2ab±D=666±17424 x1,2=666±132 x1,2=11±22 x1=11 x2=33   Factored form of the equation:  3(x11)(x+33)=0   h=G+x1=33+11=44 cm r=G2x12=31.11 cm 
h=33+11=44 cm
V=31πr2h=44602.24 cm3

Our quadratic equation calculator calculates it.




Did you find an error or inaccuracy? Feel free to write us. Thank you!



Showing 1 comment:
Dr Math
that's very mind blowing





Tips for related online calculators
Are you looking for help with calculating roots of a quadratic equation?
The Pythagorean theorem is the base for the right triangle calculator.
See also our trigonometric triangle calculator.

 
We encourage you to watch this tutorial video on this math problem: video1   video2   video3

Related math problems and questions: