Sphere and cone

Within the sphere of radius G = 33 cm, inscribe the cone with the largest volume. What is that volume, and what are the dimensions of the cone?

Correct answer:

r =  31.11 cm
h =  44 cm
V =  44602.24 cm3

Step-by-step explanation:

G=33 cm V=31πr2h h=G+x=33+x G2=x2+r2 r2=G2x2 V=31π(G2x2)(G+x) V=31π(G3+G2xGx2x3)  V=31π(G22Gx3x2) V=0 G22Gx3x2=0 3x266x+1089=0 3x2+66x1089=0 3 ...  prime number 66=2311 1089=32112 GCD(3,66,1089)=3=3  x2+22x363=0  a=1;b=22;c=363 D=b24ac=22241(363)=1936 D>0  x1,2=2ab±D=222±1936 x1,2=222±44 x1,2=11±22 x1=11 x2=33   Factored form of the equation:  (x11)(x+33)=0   h=G+x1=33+11=44 cm r=G2x12=31.11 cm 
h=33+11=44 cm
V=31πr2h=44602.24 cm3

Our quadratic equation calculator calculates it.

Did you find an error or inaccuracy? Feel free to write us. Thank you!

Showing 1 comment:
Dr Math
that's very mind blowing

Tips for related online calculators
Are you looking for help with calculating roots of a quadratic equation?
See also our right triangle calculator.
See also our trigonometric triangle calculator.

We encourage you to watch this tutorial video on this math problem: video1   video2   video3

Related math problems and questions: