Geometry - math word problems - page 154 of 162
Number of problems found: 3227
- Airplane navigation
An airplane leaves an airport and flies west 120 miles and then 150 miles in the direction S 32.12°W. How far is the plane from the airport (round to the nearest mile)?
- Mast shadow
The mast has a 13 m long shadow on a slope rising from the mast foot toward the shadow angle at an angle of 15°. Determine the height of the mast if the sun above the horizon is at an angle of 33°. Use the law of sines.
- In plane 2
A triangle ABC is located in the plane with a right angle at vertex C, for which the following holds: A(1, 2), B(5, 2), C(x, x+1), where x > -1. a) determine the value of x b) determine the coordinates of point M, which is the midpoint of line segment
- Coefficient 81704
In the equation of the line p: ax-2y+1=0, determine the coefficient a so that the line p: a) it formed an angle of 120° with the positive direction of the x-axis, b) passed through point A[3,-2], c) was parallel to the x-axis, d) had a direction of k = 4.
- Parametrically 6400
Find the angle of the line, which is determined parametrically x = 5 + t y = 1 + 3t z = -2t t belongs to R and the plane, which is determined by the general equation 2x-y + 3z-4 = 0.
- Dice - 5 times
We roll the dice five times. Make sentences: a) 3 events that definitely cannot happen. Write a reason for each. b) 3 events that will definitely occur; write a reason for each. Another problem: 3 events that may or may not occur for each. Write a reason.
- A boy
A boy of 1.7m in height is standing 30m away from the flagstaff on the same level ground. He observes that the angle of deviation of the top of the flagstaff is 30 degrees. Calculate the height of the flagstaff.
- Octahedron - sum
On each wall of a regular octahedron is written one of the numbers 1, 2, 3, 4, 5, 6, 7, and 8, wherein on different sides are different numbers. John makes the sum of the numbers written on three adjacent walls for each wall. Thus got eight sums, which al
- Water channel
The cross-section of the water channel is a trapezoid. The bottom width is 19.7 m, the water surface width is 28.5 m, and the side walls have a slope of 67°30' and 61°15'. Calculate how much water flows through the channel in 5 minutes if the water flows
- Tangens parallelogram
If ∠BAD between the sides AB and AD of the parallelogram is θ, what is tan θ? See diagram: A=(7,1) B=(5,-2) C=(12,1) D=(14,4)
- Length of the chord
Calculate the length of the chord in a circle with a radius of 25 cm and a central angle of 26°.
- Sphere floating
Will a hollow iron ball float with an outer diameter of d1 = 20cm and an inside diameter of d2 = 19cm in the water? The iron density is 7.8 g/cm³. (Instructions: Calculate the average sphere density and compare it with the water density. )
- Crosswind
A plane is traveling 45 degrees N of E at 320 km/h when it comes across a current from S of E at 115 degrees of 20 km/h. What are the airplane's new course and speed?
- Space vectors 3D
The vectors u = (1; 3;- 4) and v = (0; 1; 1) are given. Find their sizes, calculate their angles, and determine the distances between them.
- View angle
At a distance of 10 m from the river bank, they measured the base AB = 50 m parallel to the bank. Point C on the other bank of the river is visible from point A at an angle of 32°30' and from point B at an angle of 42°15'. Calculate the width of the river
- Equilateral cylinder
A sphere is inserted into the rotating equilateral cylinder (touching the bases and the shell). Prove that the cylinder has both a volume and a surface half larger than an inscribed sphere.
- A man 7
A man wandering in the desert walks 3.8 miles in the direction of S 44° W. He then turns and walks 2.2 miles toward N 55° W. At that time, how far is he from his starting point? (Round your answer to two decimal places.)
- Shortest walk
An ant is crawling around this cube. The cube is made of wire. Each side of the cube is 3 inches long. (Those sides are called edges.) Points A and B are vertices of the cube. What is the least distance the ant would have to crawl if it starts from point
- Trapezoid IV
In a trapezoid ABCD (AB||CD) is |AB| = 15cm |CD| = 7 cm, |AC| = 12 cm, AC is perpendicular to BC. What area has a trapezoid ABCD?
- See harmonics
Is it true that the size of the central segment of any trapezoid is the harmonic mean size of its bases? Prove it. The central segment crosses the intersection of the diagonals and is parallel to the bases.
Do you have homework that you need help solving? Ask a question, and we will try to solve it. Solving math problems.