Geometry - math word problems - page 154 of 162
Number of problems found: 3232
- Northeasterly 9681
A military unit marches in a northerly direction from point A to point B, 15 km away. From place B, it goes 12 km in a northeasterly direction to place C. Determine the direct distance of cities A and C and certainly the deviation -alpha- by which the uni
- Maturitný - RR - base
In an isosceles triangle ABC with base AB, ∠BAC = 20°, AB = 4. The axis of the interior angle at vertex B intersects side AC at point P. Calculate the length of the segment AP. Give the result to two decimal places.
- Climb
The road has climbing 1:28. How big is the angle that corresponds to this climbing?
- Directional 2595
Calculate the interior angles of triangle ABC using vectors. Coordinates A [2; 4] B [4; 6] C [0; -4]. Calculate directional vectors of sides, parametric and general equations of sides, parametric and general equations of lines, calculate area, calculate h
- Perpendicular and parallel
Find the value of t if 2tx+5y-6=0 and 5x-4y+8=0 are perpendicular and parallel lines. What angle does each line make with the x-axis, and find the angle between the lines?
- Scale
The student drew the cylinder in scale 7:1. How many times is the volume of the cylinder smaller in reality?
- Octahedron - sum
On each wall of a regular octahedron is written one of the numbers 1, 2, 3, 4, 5, 6, 7, and 8, wherein on different sides are different numbers. John makes the sum of the numbers written on three adjacent walls for each wall. Thus got eight sums, which al
- Mast angles and height
Calculate the height of the mast, whose foot can be seen at a depth angle of 11° and the top at a height angle of 28°. The mast is observed from a position 10 m above the level of the base of the mast.
- Tunnel - quadrilateral
How long will the tunnel AB be, distances AD=35 m, DC=120 m, CB=85 m, and angles ADC=105 degrees and BCD=71 degrees. ABCD is a quadrilateral.
- Airplane navigation
An airplane leaves an airport and flies west 120 miles and then 150 miles in the direction S 35.95°W. How far is the plane from the airport (round to the nearest mile)?
- Scalar dot product
Calculate u.v if |u| = 5, |v| = 2 and when the angle between the vectors u, v is: a) 60° b) 45° c) 120°
- Area and two angles
Calculate the size of all sides and internal angles of a triangle ABC if it is given by area S = 501.9; and two interior angles α = 15°28' and β = 45°.
- Height of poplar
From the 40 m high observation deck, you can see the top of the poplar at a depth angle of 50°10' and the bottom of the poplar at a depth angle of 58°. Calculate the height of the poplar.
- Approximation of tangent fx
What is the nontrigonometric formula (not a polynomial fit) for the growth curve that solves algebraically for the increase between tan(1 degree) and tan(2 degrees) continuing up to the tangent(45 degrees)? Okay, to use pi Check calculation for 12°.
- Tangens parallelogram
If ∠BAD between the sides AB and AD of the parallelogram is θ, what is tan θ? See diagram: A=(7,1) B=(5,-2) C=(12,1) D=(14,4)
- V-belt
Calculate the length of the V-belt when the diameter of the pulleys is: D1 = 600 mm D2 = 120 mm d = 480 mm (distance between pulley axes)
- Determine 82034
The vectors a = (3, -2), b = (-1, 5) are given. Determine the vector c for which a. c = 17; c = 3
- See harmonics
Is it true that the size of the central segment of any trapezoid is the harmonic mean size of its bases? Prove it. The central segment crosses the intersection of the diagonals and is parallel to the bases.
- Mast shadow
The mast has a 13 m long shadow on a slope rising from the mast foot toward the shadow angle at an angle of 15°. Determine the height of the mast if the sun above the horizon is at an angle of 33°. Use the law of sines.
- A boy
A boy of 1.7m in height is standing 30m away from the flagstaff on the same level ground. He observes that the angle of deviation of the top of the flagstaff is 30 degrees. Calculate the height of the flagstaff.
Do you have homework that you need help solving? Ask a question, and we will try to solve it. Solving math problems.