Solid geometry, stereometry - page 116 of 120
Number of problems found: 2399
- Paper box
Calculate the paper consumption on the box-shaped quadrangular prism with rhombic footstall, base edge a=6 cm, and the adjacent base edges form an angle alpha = 60 °. The box height is 10 cm. How much m² of the paper is consumed 100 such boxes?
- Four sided prism
Calculate the volume and surface area of a regular quadrangular prism whose height is 28.6cm, and the diagonal body forms a 50-degree angle with the base plane.
- Quadrilateral oblique prism
What is the volume of a quadrilateral oblique prism with base edges of length a = 1m, b = 1.1m, c = 1.2m, d = 0.7m if a side edge of length h = 3.9m has a deviation from the base of 20° 35' and the edges a, b form an angle of 50.5°?
- Float boya
A 0.5-meter spherical float is a location mark for a fishing boat anchor. It floats in salt water. Find the depth to which the float sinks if the material of which the float is made weighs 8 kilograms per cubic meter and saltwater weighs 1027 kg/m³.
- Flowerbed
The flowerbed has the shape of a truncated pyramid. The bottom edge of the base a = 10 m, and the upper base b = 9 m. The deviation angle between the edge and the base is alpha = 45°. What volume is needed to make this flowerbed? How many plants can be pl
- Tetrahedral pyramid
Determine the surface of a regular tetrahedral pyramid when its volume is V = 120 and the angle of the sidewall with the base plane is α = 42° 30'.
- Quadrilateral prism
Calculate the volume (V) and the surface (S) of a regular quadrilateral prism whose height is 28.6 cm and the deviation of the body diagonal from the base plane is 50°.
- The spacecraft
The spacecraft spotted a radar device at an altitude angle alpha = 34 degrees 37 minutes and had a distance of u = 615km from Earth's observation point. Calculate the distance d of the spacecraft from Earth at the moment of observation. Earth is considere
- Circular pool
The pool's base is a circle with a radius r = 10 m, excluding a circular segment that determines the chord length of 10 meters. The pool depth is h = 2m. How many hectoliters of water can fit into the pool?
- Space diagonal angles
Calculate the angle between the body diagonal and the side edge c of the block with dimensions: a = 28cm, b = 45cm, and c = 73cm. Then, find the angle between the body diagonal and the plane of the base ABCD.
- Quadrilateral prism
The height of a regular quadrilateral prism is v = 10 cm, and the deviation of the body diagonal from the base is 60°. Determine the length of the base edges, the surface, and the prism's volume.
- Tetrahedral pyramid 8
Let all the side edges of the tetrahedral pyramid ABCDV be equally long and its base let us be a rectangle. Find its volume if you know the deviations A=40° B=70° between the planes of adjacent sidewalls and the base plane. The height of the pyramid is h=
- Angle of deviation
The surface of the rotating cone is 30 cm² (with a circle base), and its surface area is 20 cm². Calculate the deviation of this cone's side from the base's plane.
- Diagonal
Determine the dimensions of the cuboid if it is diagonally long 60 dm and has an angle with one edge 35° and with another edge 77°.
- Quadrilateral pyramid
The height of a regular quadrilateral pyramid is 6.5 cm, and the angle between the base and the side wall is 42°. Calculate the surface area and volume of the body—round calculations to 1 decimal place.
- Base diagonal
In a regular four-sided pyramid, the side edge forms an angle of 55° with the base's diagonal. The length of the side edge is eight meters. Calculate the pyramid's surface area and volume.
- Moon
We see the Moon from the perspective angle 28'. At the time of the full Moon, the Moon's radius is 1740 km. Calculate the mean distance of the Moon from the Earth.
- Tower
How many m² of the copper plate should be replaced on the roof of the conical tower shape with a diameter 23 m, and the angle at the axial section's vertex is 119°?
- The cone
The cone's lateral surface area is 4 cm², and the area of the base is 2 cm². Find the angle in degrees (deviation) of the cone sine and the cone base plane. (The cone side is the segment joining the vertex cone with any point of the base circle. All sides
- Rotary cone
The volume of the rotation of the cone is 733 cm³. The angle between the side of the cone and the base angle is 75°. Calculate the lateral surface area of this cone.
Do you have homework that you need help solving? Ask a question, and we will try to solve it. Solving math problems.
See also more information on Wikipedia.