Pravouhlý trojuholník kalkulačka (A,c) - výsledok




Prosím zadajte dve vlastnosti pravouhlého trojuholníka

Poznám symboly: a, b, c, A, B, v, S, o, r, R


Zadané prepona c a uhol α.

Pravouhlý rôznostranný trojuholník.

Strany: a = 4.33301270189   b = 2.5   c = 5

Obsah trojuholníka: S = 5.41326587737
Obvod trojuholníka: o = 11.83301270189
Semiperimeter (poloobvod): s = 5.91550635095

Uhol ∠ A = α = 60° = 1.04771975512 rad
Uhol ∠ B = β = 30° = 0.52435987756 rad
Uhol ∠ C = γ = 90° = 1.57107963268 rad

Výška trojuholníka: va = 2.5
Výška trojuholníka: vb = 4.33301270189
Výška trojuholníka: vc = 2.16550635095

Ťažnica: ta = 3.30771891388
Ťažnica: tb = 4.50769390943
Ťažnica: tc = 2.5

Polomer vpísanej kružnice: r = 0.91550635095
Polomer opísanej kružnice: R = 2.5

Súradnice vrcholov: A[5; 0] B[0; 0] C[3.75; 2.16550635095]
Ťažisko: T[2.91766666667; 0.72216878365]
Súradnice stredu opísanej kružnice: U[2.5; 0]
Súradnice stredu vpísanej kružnice: I[3.41550635095; 0.91550635095]

Vonkajšie uhly trojuholníka:
∠ A' = α' = 120° = 1.04771975512 rad
∠ B' = β' = 150° = 0.52435987756 rad
∠ C' = γ' = 90° = 1.57107963268 rad

Vypočítať ďaľší trojuholník




Ako sme vypočítali tento trojuholník?

Výpočet trojuholníka prebieha v dvoch fázach. Prvá fáza je taká, že zo vstupných parametrov sa snažíme vypočítať všetky tri strany trojuholníka. Prvá fáza prebieha rôzne pre rôzne zadané trojuholníky. Druhá fáza je vlastne výpočet ostatných charakteristík trojuholníka (z už vypočítaných strán, preto SSS), ako sú uhly, plocha, obvod, výšky, ťažnice, polomery kružníc atď. Niektoré vstupné vstupné údaje vedú aj v dvom až trom správnym riešeniam trojuholníka (napr. ak je zadaný obsah trojuholníka a dve strany - výsledkom je typicky ostrouhlý a aj tupouhlý trojuholník).

1. Zadané vstupné údaje: prepona c a uhol α

c=5 α=60

2. Z úhla α vypočítame uhol β:

α+β+90=180 β=90α=9060=30

3. Z prepony c a úhla α vypočítame odvesnu a:

sinα=a:c a=c sinα=5 sin(60)=4.33

4. Z odvesny a a prepony c vypočítame odvesnu b - Pytagorova veta:

c2=a2+b2 b=c2a2=524.332=2.5

Teraz, ked vieme dĺžky všetkých troch strán trojuholníka, trojuholník je jednoznačne určený. Ďalej preto výpočet je rovnaký a dopočítajú sa ďaľšie jeho vlastnosti - vlastne výpočet trojuholníka zo známych troch strán SSS.

a=4.33 b=2.5 c=5

5. Obvod trojuholníka je súčtom dĺžok jeho troch strán

o=a+b+c=4.33+2.5+5=11.83

6. Polovičný obvod trojuholníka

Polovičný obvod trojuholníka (semiperimeter) je polovica z jeho obvodu. Polovičný obvod trojuholníka sa vo vzorcoch pre trojuholníky často vyskytuje tak, že mu bol pridelený samostatný názov (semiperimeter - poloobvod - s). Trojuholníkova nerovnosť hovorí, že najdlhšia dĺžka strany trojuholníka musí byť menšia ako semiperimeter.

s=o2=11.832=5.92

7. Obsah trojuholníka

S=ab2=4.33 2.52=5.41

8. Výpočet výšiek pravoúhleho trojuholníku z jeho obsahu.

va=b=2.5  vb=a=4.33  S=cvc2   vc=2 Sc=2 5.415=2.17

9. Výpočet vnútorných uhlov trojuholníka - základné použitie sínus funkcie

sinα=ac α=arcsin(ac)=arcsin(4.335)=60 sinβ=bc β=arcsin(bc)=arcsin(2.55)=30 γ=90

10. Polomer vpísanej kružnice

Vpísaná kružnica v trojuholníku je kružnica (kruh), ktorý sa dotýka každej jeho strany. Všetky trojuholníky majú vpísanú kružnicu a jej stred vždy leží vo vnútri trojuholníka. Stred vpísanej kružnice je priesečník troch osí vnútorných uhlov (priesečník bisektorov). Súčin polomeru vpísanej kružnice a semiperimetru (polovice obvodu) trojuholníka je jeho plocha.

S=rs r=Ss=5.415.92=0.92

11. Polomer opísanej kružnice

Opísaná kružnica trojuholníka je kružnica, ktorá prechádza všetkými vrcholmi trojuholníka. Stred opísanej kružnice je bod, v ktorom sa pretínajú osi strán trojuholníka.

R=c2=52=2.5

12. Výpočet ťažníc

Ťažnica (medián) trojuholníka je úsečka spájajúca vrchol so stredom protiľahlej strany. Každý trojuholník má tri ťažnice a všetky sa vzájomne pretínajú v ťažisku trojuholníka. Ťažisko rozdeľuje ťažnice na časti v pomere 2:1, pričom ťažisko je dvakrát bližšie k stredu strany ako protiľahlý vrchol. Apolloniusovu vetu používame na výpočet dĺžky ťažníc z dĺžok jeho strán.

ta2=b2+(a/2)2 ta=b2+(a/2)2=2.52+(4.33/2)2=3.307  tb2=a2+(b/2)2 tb=a2+(b/2)2=4.332+(2.5/2)2=4.507  tc=R=c2=52=2.5

Vypočítať ďaľší trojuholník




Trigonometria - riešič pravouhlého trojuholníka. Nájde preponu c trojuholníka - kalkulačka. Plocha pravouhlého trojuholníka S- kalkulačka.

Kalkulačka pravouhlého trojuholníka vypočíta uhly, strany (priľahlé, protiľahlé, preponu) a obsah ľubovoľného pravouhlého trojuholníka. Akýkoľvek pravouhlý trojuholník úplne určujú dve nezávislé vlastnosti. Kalkulačka poskytuje podrobné vysvetlenie každého výpočtu.

Pravoúhlý trojuholník je druh trojuholníka, ktorý má jeden uhol, ktorý meria C = 90°. V pravom trojuholníku je strana c, ktorá je oproti uhlu C = 90 °, najdlhšia strana trojuholníka a nazýva sa prepona. Strany a, b sú dĺžky kratších strán, tiež nazývané odvesny alebo ramená. Premenné pre uhly sú A, B alebo α (alpha) a β (beta). Premenná h sa vzťahuje na výšku trojuholníka, čo je vzdialenosť od vrcholu C po preponu trojuholníka.


Možnosti výpočtu trojuholníka:

Pravoúhlý trojuholník v slovných úlohách v matematike:

  • Trojuholník P2
    1right_triangle Môže mať trojuholník dva pravé uhly?
  • Dôkaz - MO - C – I – 3
    RightTriangleMidpoint_2 Päta výšky z vrcholu C v trojuholníku ABC delí stranu AB v pomere 1:2. Dokážte, že pri zvyčajnom označení dĺžok strán trojuholníka ABC platí nerovnosť ?.
  • Výška 2
    1unilateral_triangle Vypočítajte výšku rovnostranného trojuholníka so stranou 38.
  • Pravouhlý lichobežník
    right_trapezium Vypočítajte obsah pravouhlého lichobežníka ABCD s pravým uhlom pri vrchole A: a = 3 dm b = 5 dm c = 6 dm d = 4 dm
  • Zlomený strom
    stromy_4 Strom je zlomený vo výške 4 metre nad zemou a vrch stromu sa dotýka zeme vo vzdialenosti 5 od kmeňa. Vypočítajte pôvodnú výšku stromu.
  • Lanovka
    lanovka Lanovka stúpa pod uhlom 45° a spája hornú a dolnú stanicu s výškovým rozdielom 744 m. Aké dlhé je "nekonečné" ťažné lano lanovky?
  • Rebrík 6
    rebrik33_5 Do akej výšky siaha rebrík dlhý 6,5m opretý o stenu vo vzdialenosti 5,4m?
  • Smrek
    stromcek_7 Aký vysoký bol smrek, ktorý sa spílil vo výške 8m nad zemou a vrcholec dopadol vo vzdialenosti 15m od päty stromu?
  • Rovnostranný trojuholník 3
    equilateral_triangle_3 Výška v rovnostrannom trojuholníku ABC meria odmocninu z 3 cm. Akú dĺžku má stredná priečka tohto trojuholníka?
  • Tangens
    tan V prípade, že tangens uhla a pravouhlého trojuholníka je 0,8. Potom je jej najdlhšia strana. .. .
  • Dvojitý rebrík 2
    dvojak Dvojitý rebrík je 8,5m dlhý . Je postavený tak že jeho dolné konce sú od seba vzdialené 3,5m. Do akej výšky dosahuje horný koniec rebríka?
  • Dve opice
    opice Na strome sedeli dve opice jedna na vrchole a druhá 10 lakťov od zeme . Obidve sa chceli napiť z pramena ktorý bol vzdialený 40 lakťov . Jedna opica skočila k pramenu z vrchola a preletela tú istú dráhu ako druhá opica . akú dlhú dráhu preleteli?
  • Vypočítaj 50
    345 Vypočítaj zvyšné strany pravouhlého trojuholníka ak poznáš b= 4cm a vc = 2,4cm.
  • Odvesny a stred
    RightTriangleMidpoint Jedna z odvesien pravouhlého trojuholníka má dĺžku 12 cm. V akej vzdialenosti je stred prepony od druhej odvesny?
  • Euklid2
    euclid V pravouhlom trojuholníku ABC s pravým uhlom pri vrchole C je daná odvesna a = 27 a výška v = 17. Určite obvod trojuholníka.


slovné úlohy - viacej »