Výpočet trojuholníka SSS - výsledok
Ostrouhlý rôznostranný trojuholník.
Strany: a = 8 b = 4 c = 7Obsah trojuholníka: S = 13,99877676792
Obvod trojuholníka: o = 19
Semiperimeter (poloobvod): s = 9,5
Uhol ∠ A = α = 88,97768066963° = 88°58'37″ = 1,55329382348 rad
Uhol ∠ B = β = 29,99547255274° = 29°59'41″ = 0,52435067187 rad
Uhol ∠ C = γ = 61,02884677763° = 61°1'42″ = 1,06551477001 rad
Výška trojuholníka: va = 3,49994419198
Výška trojuholníka: vb = 6,99988838396
Výška trojuholníka: vc = 3,9999362194
Ťažnica: ta = 4,06220192023
Ťažnica: tb = 7,24656883731
Ťažnica: tc = 5,26878268764
Polomer vpísanej kružnice: r = 1,47334492294
Polomer opísanej kružnice: R = 4,00106379077
Súradnice vrcholov: A[7; 0] B[0; 0] C[6,92985714286; 3,9999362194]
Ťažisko: T[4,64328571429; 1,33331207313]
Súradnice stredu opísanej kružnice: U[3,5; 1,93878089865]
Súradnice stredu vpísanej kružnice: I[5,5; 1,47334492294]
Vonkajšie uhly trojuholníka:
∠ A' = α' = 91,02331933037° = 91°1'23″ = 1,55329382348 rad
∠ B' = β' = 150,00552744726° = 150°19″ = 0,52435067187 rad
∠ C' = γ' = 118,97215322237° = 118°58'18″ = 1,06551477001 rad
Vypočítať ďaľší trojuholník
Ako sme vypočítali tento trojuholník?
Teraz, ked vieme dĺžky všetkých troch strán trojuholníka, trojuholník je jednoznačne určený.
a=8 b=4 c=7
1. Obvod trojuholníka je súčtom dĺžok jeho troch strán
o=a+b+c=8+4+7=19
2. Polovičný obvod trojuholníka
Polovičný obvod trojuholníka (semiperimeter) je polovica z jeho obvodu. Polovičný obvod trojuholníka sa vo vzorcoch pre trojuholníky často vyskytuje tak, že mu bol pridelený samostatný názov (semiperimeter - poloobvod - s). Trojuholníkova nerovnosť hovorí, že najdlhšia dĺžka strany trojuholníka musí byť menšia ako semiperimeter.s=2o=219=9,5
3. Obsah trojuholníka pomocou Herónovho vzorca
Herónov vzorec dáva obsah trojuholníka, keď sú známe dĺžky všetkých troch strán. Nie je potrebné najprv vypočítať uhly alebo iné vzdialenosti v trojuholníku. Herónov vzorec funguje rovnako dobre vo všetkých prípadoch a druhoch trojuholníkov.S=s(s−a)(s−b)(s−c) S=9,5(9,5−8)(9,5−4)(9,5−7) S=195,94=14
4. Výpočet výšiek trojuholníku z jeho obsahu.
Existuje veľa spôsobov, ako zistiť výšku trojuholníka. Najjednoduchší spôsob je zo vzorca, keď poznáme obsah a dĺžku základne. Plocha trojuholníka je polovicou súčinu dĺžky základne a výšky. Každá strana trojuholníka môže byť základňou; existujú teda tri základne a tri výšky. Výška trojuholníka je kolmá úsečka od vrcholu po priamku obsahujúcu základňu.S=2ava va=a2 S=82⋅ 14=3,5 vb=b2 S=42⋅ 14=7 vc=c2 S=72⋅ 14=4
5. Výpočet vnútorných uhlov trojuholníka pomocou kosínusovej vety
Kosínusová veta je užitočná pri hľadaní uhlov trojuholníka, keď poznáme všetky tri strany. Kosínusová veta spája všetky tri strany trojuholníka s uhlom trojuholníka. Kosínusová veta je extrapoláciou Pytagorovej vety pre akýkoľvek trojuholník. Pythagorova veta funguje iba v pravouhlom trojuholníku. Pythagorova veta je osobitným prípadom Kosínusovej vety a dá sa z neho odvodiť, pretože kosínus 90 ° je 0. Najlepšie je najskôr nájsť uhol oproti najdlhšej strane. V prípade kosínusovej vety neexistuje problém s tupými uhlami ako v prípade sínusovej vety, pretože funkcia kosínus je záporná pre tupé uhly, nulová pre pravé a kladná pre ostré uhly. Na určenie uhla z hodnoty kosínusu používame inverzný kosínus nazývaný arkuskosínus.a2=b2+c2−2bccosα α=arccos(2bcb2+c2−a2)=arccos(2⋅ 4⋅ 742+72−82)=88°58′37" b2=a2+c2−2accosβ β=arccos(2aca2+c2−b2)=arccos(2⋅ 8⋅ 782+72−42)=29°59′41" γ=180°−α−β=180°−88°58′37"−29°59′41"=61°1′42"
6. Polomer vpísanej kružnice
Vpísaná kružnica v trojuholníku je kružnica (kruh), ktorý sa dotýka každej jeho strany. Všetky trojuholníky majú vpísanú kružnicu a jej stred vždy leží vo vnútri trojuholníka. Stred vpísanej kružnice je priesečník troch osí vnútorných uhlov (priesečník bisektorov). Súčin polomeru vpísanej kružnice a semiperimetru (polovice obvodu) trojuholníka je jeho plocha.S=rs r=sS=9,514=1,47
7. Polomer opísanej kružnice
Opísaná kružnica trojuholníka je kružnica, ktorá prechádza všetkými vrcholmi trojuholníka. Stred opísanej kružnice je bod, v ktorom sa pretínajú osi strán trojuholníka.R=4 rsabc=4⋅ 1,473⋅ 9,58⋅ 4⋅ 7=4
8. Výpočet ťažníc
Ťažnica (medián) trojuholníka je úsečka spájajúca vrchol so stredom protiľahlej strany. Každý trojuholník má tri ťažnice a všetky sa vzájomne pretínajú v ťažisku trojuholníka. Ťažisko rozdeľuje ťažnice na časti v pomere 2:1, pričom ťažisko je dvakrát bližšie k stredu strany ako protiľahlý vrchol. Apolloniusovu vetu používame na výpočet dĺžky ťažníc z dĺžok jeho strán.ta=22b2+2c2−a2=22⋅ 42+2⋅ 72−82=4,062 tb=22c2+2a2−b2=22⋅ 72+2⋅ 82−42=7,246 tc=22a2+2b2−c2=22⋅ 82+2⋅ 42−72=5,268
Vypočítať ďaľší trojuholník