Výpočet trojuholníka SSS - výsledok




Prosím zadajte tri strany trojuholníka:


Ostrouhlý rôznostranný trojuholník.

Dĺžky strán trojuholníka:
a = 9,82
b = 9,87
c = 12,09

Obsah trojuholníka: S = 46,97327880246
Obvod trojuholníka: o = 31,78
Semiperimeter (poloobvod): s = 15,89

Uhol ∠ A = α = 51,9332661643° = 51°55'58″ = 0,9066395935 rad
Uhol ∠ B = β = 52,30767175604° = 52°18'24″ = 0,91329244423 rad
Uhol ∠ C = γ = 75,76106207966° = 75°45'38″ = 1,32222722763 rad

Výška trojuholníka na stranu a: va = 9,56767592718
Výška trojuholníka na stranu b: vb = 9,51882954457
Výška trojuholníka na stranu c: vc = 7,77105191108

Ťažnica: ta = 9,88435418753
Ťažnica: tb = 9,8466117255
Ťažnica: tc = 7,77106257792

Polomer vpísanej kružnice: r = 2,95661225944
Polomer opísanej kružnice: R = 6,23766103614

Súradnice vrcholov: A[12,09; 0] B[0; 0] C[6,00442845327; 7,77105191108]
Ťažisko: T[6,03114281776; 2,59901730369]
Súradnice stredu opísanej kružnice: U[6,045; 1,53440416554]
Súradnice stredu vpísanej kružnice: I[6,02; 2,95661225944]

Vonkajšie uhly trojuholníka:
∠ A' = α' = 128,0677338357° = 128°4'2″ = 0,9066395935 rad
∠ B' = β' = 127,69332824396° = 127°41'36″ = 0,91329244423 rad
∠ C' = γ' = 104,23993792034° = 104°14'22″ = 1,32222722763 rad


Vypočítať ďaľší trojuholník

Ako sme vypočítali tento trojuholník?


Teraz, ked vieme dĺžky všetkých troch strán trojuholníka, trojuholník je jednoznačne určený.
a=9,82 b=9,87 c=12,09

1. Obvod trojuholníka je súčtom dĺžok jeho troch strán

o=a+b+c=9,82+9,87+12,09=31,78

2. Polovičný obvod trojuholníka

Polovičný obvod trojuholníka (semiperimeter) je polovica z jeho obvodu. Polovičný obvod trojuholníka sa vo vzorcoch pre trojuholníky často vyskytuje tak, že mu bol pridelený samostatný názov (semiperimeter - poloobvod - s). Trojuholníkova nerovnosť hovorí, že najdlhšia dĺžka strany trojuholníka musí byť menšia ako semiperimeter.

s=2o=231,78=15,89

3. Obsah trojuholníka pomocou Herónovho vzorca

Herónov vzorec dáva obsah trojuholníka, keď sú známe dĺžky všetkých troch strán. Nie je potrebné najprv vypočítať uhly alebo iné vzdialenosti v trojuholníku. Herónov vzorec funguje rovnako dobre vo všetkých prípadoch a druhoch trojuholníkov.

4. Výpočet výšiek trojuholníku z jeho obsahu.

Existuje veľa spôsobov, ako zistiť výšku trojuholníka. Najjednoduchší spôsob je zo vzorca, keď poznáme obsah a dĺžku základne. Plocha trojuholníka je polovicou súčinu dĺžky základne a výšky. Každá strana trojuholníka môže byť základňou; existujú teda tri základne a tri výšky. Výška trojuholníka je kolmá úsečka od vrcholu po priamku obsahujúcu základňu.

5. Výpočet vnútorných uhlov trojuholníka pomocou kosínusovej vety

Kosínusová veta je užitočná pri hľadaní uhlov trojuholníka, keď poznáme všetky tri strany. Kosínusová veta spája všetky tri strany trojuholníka s uhlom trojuholníka. Kosínusová veta je extrapoláciou Pytagorovej vety pre akýkoľvek trojuholník. Pythagorova veta funguje iba v pravouhlom trojuholníku. Pythagorova veta je osobitným prípadom Kosínusovej vety a dá sa z neho odvodiť, pretože kosínus 90 ° je 0. Najlepšie je najskôr nájsť uhol oproti najdlhšej strane. V prípade kosínusovej vety neexistuje problém s tupými uhlami ako v prípade sínusovej vety, pretože funkcia kosínus je záporná pre tupé uhly, nulová pre pravé a kladná pre ostré uhly. Na určenie uhla z hodnoty kosínusu používame inverzný kosínus nazývaný arkuskosínus.

a2=b2+c22bccosα  α=arccos(2bcb2+c2a2)=arccos(2 9,87 12,099,872+12,0929,822)=51°5558"  b2=a2+c22accosβ β=arccos(2aca2+c2b2)=arccos(2 9,82 12,099,822+12,0929,872)=52°1824" γ=180°αβ=180°51°5558"52°1824"=75°4538"

6. Polomer vpísanej kružnice

Vpísaná kružnica v trojuholníku je kružnica (kruh), ktorý sa dotýka každej jeho strany. Všetky trojuholníky majú vpísanú kružnicu a jej stred vždy leží vo vnútri trojuholníka. Stred vpísanej kružnice je priesečník troch osí vnútorných uhlov (priesečník bisektorov). Súčin polomeru vpísanej kružnice a semiperimetru (polovice obvodu) trojuholníka je jeho plocha.

7. Polomer opísanej kružnice

Opísaná kružnica trojuholníka je kružnica, ktorá prechádza všetkými vrcholmi trojuholníka. Stred opísanej kružnice je bod, v ktorom sa pretínajú osi strán trojuholníka.

R=4 rsabc=4 2,956 15,899,82 9,87 12,09=6,24

8. Výpočet ťažníc

Ťažnica (medián) trojuholníka je úsečka spájajúca vrchol so stredom protiľahlej strany. Každý trojuholník má tri ťažnice a všetky sa vzájomne pretínajú v ťažisku trojuholníka. Ťažisko rozdeľuje ťažnice na časti v pomere 2:1, pričom ťažisko je dvakrát bližšie k stredu strany ako protiľahlý vrchol. Apolloniusovu vetu používame na výpočet dĺžky ťažníc z dĺžok jeho strán.


Vypočítať ďaľší trojuholník