Číselná os

V kocúrskovskej škole používajú zvláštne číselnú os. Vzdialenosť medzi číslami 1 a 2 je 1 cm, vzdialenosť medzi číslami 2 a 3 je 3 cm, medzi číslami 3 a 4 je 5 cm, a tak ďalej, vzdialenosť medzi nasledujúce dvojicou prirodzenými číslami sa vždy zväčší o 2 cm.

Medzi ktorými dvoma prirodzenými číslami je na kocúrskovskej číselnej osi vzdialenosť 39 cm?

Nájdi všetky možnosti.

Výsledok

n =  2

Riešenie:




Naše príklady z veľkej miery nám poslali alebo vytvorili samotní žiaci a študenti. Preto budeme veľmi radi, ak prípadne chyby ktoré ste našli, pravopisné chyby alebo preštylizovanie príkladu nám prosím pošlete. Ďakujeme!





Napíšte nám komentár ku príkladu (úlohe) a jeho riešeniu (napríklad ak je stále niečo nejasné alebo máte iné riešenie, alebo príklad neviete vypočítať či riešenie je nesprávne...):

Zobrazujem 1 komentár:
#
Mo-radca
Nápoveda. Vypíšte si vzdialenosti medzi rôznymi trojicami čísel na kocúrkovskej  osi.

Možné riešenie.
Vzdialenosť 39 cm môže byť realizovaná medzi rôznymi dvojicami čísel. Budeme systematicky vypisovať vzdialenosti medzi niekoľkými prvými číslami kocúrkovskej osi. V nasledujúcej schéme je nad čiarou vypísané prvých 10 čísiel a pod čiarou skutočnej vzdialenosti (v cm) medzi rôznymi dvojicami týchto čísel - na prvom riadku pod čiarou sú postupne vzdialenosti medzi susednými číslami, na druhom riadku pod čiarou sú vzdialenosti medzi dvojicami čísel, ktoré sú ob jedno, atď. (Napr. 21 na treťom riadku pod čiarou značí skutočnú vzdialenosť medzi číslami 3 a 6 na kocúrkovskej  osi a je určené ako 5 + 7 + 9). Hviezdičkou sú označené zbytočne veľké čísla, ktorá nás nezaujímajú.

1 2 3 4 5 6 7 8 9 10
1 3 5 7 9 11 13 15 17
4 8 12 16 20 24 28 32 36
9 15 21 27 33 39 * *
16 24 32 40 * * * *
25 35 45 * * * *
36 48 * * * * *
49 * * * * *

Ihneď vidíme (z tretieho riadku pod čiarou), že vzdialenosť 39 cm je medzi číslami 6 a 9 a že sa určite neobjavuje medzi číslami, ktoré sú na kocúrkovskej  osi viac ako ob dve (od štvrtého riadku pod čiarou). Vzdialenosť 39 cm sa určite tiež nemôže objavovať medzi číslami, ktoré sú ob jedno, pretože všetky tieto vzdialenosti sú párne (druhý riadok pod čiarou). Zostáva teda preskúmať vzdialenosti medzi susednými číslami (prvý riadok pod čiarou):
Postupnosť vzdialenosťou medzi susednými číslami môžeme vyjadriť ako
1, 3 = 1 + 2, 5 = 1 + 2 · 2, 7 = 1 + 2 · 3, 9 = 1 + 2 · 4,. . .
Všeobecne, vzdialenosť medzi i-tím a (i + 1) -ným číslom na kocúrkovskej  osi je rovná
1 + 2 (i - 1) = 2i - 1 (cm).
Táto vzdialenosť bude teda rovná 39 cm, práve keď i = 20. Vzdialenosť 39 cm na kocúrkovskej  číselnej osi je medzi dvojicami čísel 6, 9 a 20, 21.

Poznámky.

a) Záverečnou úvahy možno nahradiť vypísaním a spočítaním všetkých nepárnych čísel až po 39. Ak je výpočet úplný, je takéto riešenie správne.
b) Naopak úvodnej vypisovanie možno celé nahradiť úvahou, príp. výpočtom: Všetky vzdialenosti v tabuľke sú súčtom rôznych počtov nepárnych čísel, pričom tieto počty sú buď nepárne (pre susedné čísla a dvojica čísel, ktoré sú ob párny počet čísel), alebo párne (pre dvojice čísel, ktoré sú ob nepárny počet čísiel). Na jednotlivých riadkoch sa teda objavujú buď len nepárne, alebo iba párne čísla. Vzdialenosť 39 cm sa teda môže objavovať iba medzi susednými číslami a dvojicami, ktoré sú na kocúrkovskej  osi ob párny počet čísel.

Predchádzajúce vypisovanie postupnosti vzdialeností medzi susednými číslami má nasledujúce analógiu pre dvojice čísel, ktoré sú ob dve:
9, 15 = 9 + 6, 21 = 9 + 6 · 2, 27 = 9 + 6 · 3,. . .
Všeobecne, vzdialenosť medzi i-tím a (i + 3) -tým číslom na kocúrkovskej  osi je rovná 9 + 6 (i - 1) = 6i + 3 (cm).
Táto vzdialenosť bude teda rovná 39 cm, práve keď i = 6. Obdobne možno vyjadriť akúkoľvek inú vyššie vypisovanie postupnosť.
c) Riešenie úlohy možno zjednodušiť pomocou nasledujúceho poznatku: Súčet nepárneho počtu po sebe idúcich nepárnych čísel je rovný súčinu počtu týchto čísel a prostredného z nich. Zvedavým riešiteľom odporúčame tento poznatok zdôvodniť a riešenie domyslieť.
d) V uvedenej schéme si môžeme všimnúť, že všetky čísla v prvom šikmom stĺpci sú druhými mocninami prirodzených čísel. To nie je náhoda - všeobecne platí, že súčet prvých k po sebe idúcich nepárnych čísel je rovný k2. Zvedavým riešiteľom odporúčame porovnať toto tvrdenie s poznatkom v predchádzajúcej poznámke.

avatar









Na vyriešenie tejto úlohy sú potrebné tieto znalosti z matematiky:

Ďaľšie podobné príklady a úlohy:

  1. Z7–I–6, výstava mačiek
    stoly Na výstave dlhosrstých mačiek sa zišlo celkom desať vystavujúcich. Vystavovalo sa v obdĺžnikovej miestnosti, v ktorej boli dva rady stolov ako na obrázku. Mačky boli označené navzájom rôznymi číslami v rozmedzí 1 až 10 a na každom stole sedela jedna mačka.
  2. Percentá
    percent_4 Určte 340 percent z čísel 45 a 55.
  3. Veky
    age_7 Keď bude Bedrichovi toľko rokov čo je Adamovi dnes, bude mať Adam 14 rokov. Keď bude Adamovi toľko rokov koľko má Bedrich dnes, bolo Bedrichovi dva roky. Koľko rokov je dnes Adamovi a Bedrichovi?
  4. Štyri mravce
    mravec_1 Štyri mravce si večer počítali prinesené omrvinky. Prvý mravec mal 1,5- krát viac ako druhý, druhý mravec dvakrát menej ako štvrtý a tretí mravec dvakrát viac ako druhý . Spolu mali 26 omrviniek . Koľko omrviniek mal tretí mravec?
  5. Televízory
    tv Výroba televízorov vzrástla z 3500 kusov na 4200 kusov. O koľko percent sa výroba zvýšila?
  6. Neznáme číslo
    nums Urči neznáme číslo, ktorého 1/5 je o 40 väčšia ako desatina tohoto čísla.
  7. Vyznamenaní 2
    12_1 V triede ma 60% žiakov dobré študijné výsledky. Z nich je 20% vyznamenaných. Koľko percent žiakov triedy je vyznamenaných?
  8. Zväčšite
    percent_3 Číslo 160 zväčšite o: a) 25% b) 30% c) 150%
  9. Rovnica 12
    rovnice_3 Riešte rovnicu: 1/2x-2/8x=1/10 ; Výsledok zapíšte ako desatinné číslo.
  10. Percentá - ľahké
    percents_5 Koľko percent (%) je 432 z 434?
  11. Úrokova miera
    hrozienka_2 S akou úrokovou mierou si požičal vrabčiak od drozda 1200 bobúľ hrozna, keď mu vrátil 1392 bobúľ?
  12. Percentá v praxi
    plodina Keď každé desiate jablko na strome je nahnité, môžeme to vyjadriť pomocou percent: 10% jabĺk na strome je nahnitých. Vyjadri pomocou percent nasledovne informácie: a, V júni pršalo 6 dní b, pracovníkovi zvýšili plat 500 eur o 50 eúr c, z 24 striel na brán
  13. Percentá základ,hodnota...
    percent_1 Základ je 344084, to je 100 %, koľko percent je 384177?
  14. Zlacňovanie
    up_to_30 Tovar stojí 70 €, cena tovaru klesla 2 týždne po sebe vždy o 10%. O koľko % klesla celkovo?
  15. Kliky
    kliky Miloš mal urobiť 20 klikov. Urobil ich však iba 16. Koľko percent mu chýbalo k dokončeniu úlohy?
  16. Na hokejovom
    stadion_3 Na hokejovom zápase bol na začiatku plný štadión. Po prvej tretine odišlo 20% fanúšikov a po druhej tretine odišla ešte jedna šestina zvyšných fanúšikov. Koľko fanúšikov bolo na štadióne na začiatku zápasu, ak do konca zápasu vydržalo 700 z nich?
  17. Jablká 2
    jablko Jakub má 13 jabĺk. Má o 30 percent viac ako Samko. Koľko jabĺk má Samko?