Tangens - príklady
Tangens je goniometrická funkcia. V pravouhlom trojuholníku je definovaný ako pomer protiľahlej a priľahlej odvesny k danému uhlu. Algebraicky je definovaný ako podiel sínusu a kosínusu daného uhla. Je periodický s periódou π = 180°.Počet nájdených príkladov: 292
- Zorný uhol
Z veže vysokej 20 m a vzdialenej od rieky 20 m sa javí šírka rieky pod uhlom 15 °. Aká široká je rieka v tomto mieste? - Aký veľký 4
Aký veľký uhol je keď jedna strana má 20m a druhá má 1,5m pri pravoúhlom trojuholníku? - Z okna 2
Z okna ležiaceho 8 m nad horizontálnou rovinou vidíme vrchol veže vo výškovom uhle 53 stupňov 20 minút, jej pätu v hĺbkovom uhle 14 stupňov 15 minút. Aká vysoká je veža? - Podstava RR licho
Podstavou hranola je rovnoramenný lichobežník ABCD sa základňami AB = 12 cm, CD = 9 cm. Uhol pri vrchole B je 48° 10'. Určte objem a porch hranolov, ak je jeho výška 35 cm. - Obsah 51
Obsah trojuholníka je 54,39, alfa je 32 °, gama je 144 °, - Urči povrch
Urči povrch kužeľa výšky 30 cm, ktorého strana zviera s rovinou podstavy uhol 60 °. - V lichobežníku 3
V lichobežníku ABCD sú dané prvky - dĺžky základní a= 20cm, c= 11 cm, uhol α = 63°36’ a uhol β=79°36’. Vypočítajte dĺžky ostatných strán a veľkosti uhlov. - Desaťuholník - záhon
Súčasťou zámockého parku je kvetinový záhon v tvare pravidelného desaťuholníka o výmere 432,8 m². Určite vzdialenosť susedných vrcholov záhona. - Vypočitať 5
Vypočítajte obsah a obvod lichobežníka, ak strana a=10, uhol alfa 40 stupňov, beta 50 stupňov a strana c=3. - Odvesny a uhol
V pravouhlom trojuholníku poznáš odvesnu 7 metrov a uhol 30 stupňov. Vypočítajte druhu odvesnu; počítaj obe varianty - zadaný uhol je protiľahlý a aj priľahlý zadanej odvesne. - Pozorovateľ - uhly
Pozorovateľ vidí lietadlo pod výškovým uhlom 35° (uhol od vodorovnej roviny). V tej chvíli lietadlo hlási výšku 4 km. Ako ďaleko od pozorovateľa je miesto, nad ktorým lietadlo letí. Zaokrúhli na stovky metrov. - Výška, uhol a strana
Vypočítajte obsah trojuholníka ABC, v ktorom poznáte stranu c=5 cm, uhol pri vrchole A= 70 stupňov a pomer úsekov, ktoré vytína výška na stranu c je 1:3. - Obsah 44
Obsah pravouhlému trojuholníka ABC je 346 cm² a uhol pri vrchole A je 64°. Vypočítajte dĺžky odvesien a, b. - Najlepšia zákruta
Zákruta má polomer r = 100 m a je sklopená pod uhlom 20° voči vodorovnej rovine (= uhol klopenia). Aká je bezpečná (tá "najlepšia")rýchlosť pri prejazde touto zákrutou? Načrtni obrázok z hľadiska NIVS, vyznač sily a vypočítaj. - Vzducholoď - triangulácia
Vzducholoď je vo výške x nad zemou. Pavol ju sleduje z miesta A pod výškovým uhlom 18 stupňov 26 minút. V tej istej chvíli ju vidí Peter z malého lietadla, ktoré práve prelieta nad Pavlom vo výške 150m. Peter vidí vzducholoď pod výškovým uhlom 11 stupňov - Rebrík 15
Rebrík dlhý 6,5 m je opretý o zvislú stenu. Jeho spodný koniec sa opiera o zem vo vzdialenosti 1,6 m od steny. Určte, do akej výšky dosahuje horný koniec rebríka a pod akým uhlom je rebrík opretý o stenu. - Stúpanie cesty
Na dopravnej značke, ktorá informuje o stúpaní cesty, je údaj 6,7 %. Určte uhol stúpania cesty. Aký výškový rozdiel prekonalo auto, ktoré prešlo po tejto ceste 2,8 km? - Výška topoľa
Z rozhľadne vysokej 40 m je vidieť vrchol topoľa pod hĺbkovým uhlom o veľkosti 50°10' a pätu topoľa v hĺbkovom uhle o veľkosti 58°. Vypočítajte výšku topoľa. - Výškový uhol
Dopravné lietadlo, ktoré práve prelieta nad miestom 2 400 m vzdialenom od miesta pozorovateľa, je vidieť pod výškovým uhlom o veľkosti 26° 20 '. V akej výške lietadlo letí? - Na vrchole 2
Na vrchole kopca stojí rozhľadňa 30 m vysoká. Jej pätu a vrchol vidíme z určitého miesta v údolí pod výškovými uhlami a= 28°30", b=30°40". Ako vysoko je vrchol kopca nad horizontálnou rovinou pozorovacieho miesta?
Máš príklad, ktorý si tu nenašiel vyriešenú? Pošli nám tento príklad a my Ti ho skúsime vypočítať.
