Zo 6 na 3

Chceme dokázat sporem tvrzení:

Pokud je přirozené číslo n rozdělitelné šesti, potom n je dělitelné třemi.

Z jakého předpokladu budeme vycházet?

Správná odpověď:

x =  6

Postup správného řešení:

6=3 2 n=6 k;kN n=3 2 k  n=3 l;lN  x=3 2=6



Budeme velmi rádi, pokud najdete chybu v příkladu nebo nepřesnost a ji nám prosím pošlete . Děkujeme!






avatar




K vyřešení této úlohy jsou potřebné tyto znalosti z matematiky:

Související a podobné příklady:

  • Z7-I-4 MO 2017
    math_mo Na stole leželo šest kartiček s ciframi 1, 2, 3, 4, 5, 6. Anežka z těchto kartiček složila šestimístné číslo, které bylo dělitelné šesti. Potom postupně odebírala kartičky zprava. Když odebrala první kartičku, zůstalo na stole pětimístné číslo dělitelné p
  • Dělitelnost
    divisibility Je číslo 237610 dělitelné číslem 5?
  • Dělitelnost
    numbers2 Na pěti lístcích na stole jsou napsány číslice 1,2,3,4,5. Průvan lístky náhodně zamíchal a složil z nich 5-ciferné číslo. Jaká je pravděpodobnost, že složil: a, největší možné číslo b, nejmenší možné číslo c, číslo dělitelné pěti d, sudé číslo e, liché čí
  • Pětimístné
    numbers2 Anna si myslí pětimístné číslo, které není dělitelné třemi ani čtyřmi. Pokud každou cifru zvětší o jedna, získá pětimístné číslo, které je dělitelné třemi. Pokud každou cifru o jedna zmenší, získá pětimístné číslo dělitelné čtyřmi. Pokud přehodí libovolné
  • Sněhurka 2019 MO Z7
    snehulienka Sněhurka se sedmi trpaslíky nasbírali šišky na táborák. Sněhurka řekla, že počet všech šišek je číslo dělitelné dvěma. První trpaslík prohlásil, že je to číslo dělitelné třemi, druhý trpaslík řekl, že je to číslo dělitelné čtyřmi, třetí trpaslík řekl, že
  • MO B 2019 ukol 2
    olympics Přirozené číslo n má aspoň 73 dvojmístných dělitelů. Dokažte, že jedním z nich je číslo 60. Uveďte rovněž příklad čísla n, které má právě 73 dvojmístných dělitelů, včetně náležitého zdůvodnění.
  • Číslice 3
    numbers doplňte vynechanou číslici v čísle 3 ∗ 43 tak, aby vzniklo číslo, které je dělitelné třemi. Je-li více možností, uveďte všechny. (Vynechaná číslice je označena symbolem ∗. ) Odpovědi je třeba zdůvodnit!
  • MO Z8-I-2 2012
    numbers Číslo X je nejmenší takové přirozené číslo, jehož polovina je dělitelná třemi, třetina dělitelná čtyřmi, čtvrtina dělitelná jedenácti a jeho polovina dává zbytek 5 po dělení sedmi. Najděte toto číslo.
  • Zbytek
    numbers2 A je libovolné přirozené číslo, které dává při dělení číslem 6 zbytek 1. B je libovolné přirozené číslo, které dává při dělení číslem 3 zbytek 2. Jaký zbytek dává při dělení třemi součin čísel A.B ?
  • Přirozené číslo
    numbers2 Jaké je nejmenší přirozené číslo dělitelné 2,5,7,8 a 15?
  • Z7–I–1 MO 2018
    numbers2 Na každé ze tří kartiček je napsána jedna číslice různá od nuly (na různých kartičkách nejsou nutně různé číslice). Víme, že jakékoli trojmístné číslo poskládané z těchto kartiček je dělitelné šesti. Navíc lze z těchto kartiček poskládat trojmístné číslo
  • Pastýř
    ships Pastýř pásl ovce. Turisté se ho ptali, kolik jich má. Pastýř řekl: "Je jich méně než 500. Kdybych je seřadil do štvorradu tři by mi zůstaly. Kdyby do päťradu zůstali by mi čtyři a pokud do šesti radu, zůstane jejich 5. Mohu je však seřadit do sedm řady. K
  • Důkaz PV
    pytagoras Lze jednoduše dokázat Pythagorovu větu pomocí Euklidových vět? Pokud ano, dokažte.
  • Z7–I–1 MO 2017
    numbers2 Petr řekl Pavlovi: „Napiš dvojmístné přirozené číslo, které má tu vlastnost, že když od něj odečteš dvojmístné přirozené číslo napsané obráceně, dostaneš rozdíl 63. Které číslo mohl Pavel napsat? Určete všechny možnosti.
  • Nejmenší
    lcm Vytvořte nejmenší možné číslo, které je dělitelné čísly 5,8,9,4,3
  • Dělitelnost 2
    divisors Kolik dělitelů má přirozené číslo 13?
  • Tříciferné čísla
    3digit Z číslic 1, 2, 3, 4, 5 utvoř všechna trojmístná čísla tak, aby se v nich neopakovala žádná číslice a aby číslo bylo dělitelné číslem 2. Kolik je takových čísel?